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1 Spectrum, PSD, and energy calculations

We are interested in computing the spectrum, the PSD, and the energy of LRP noise defined by

n(x) =

I∑
i=1

w

(
‖x− xi‖

∆

) J∑
j=1

Ai,j cos(2πfi,j · x+ ϕi,j) (1)

Since the phases are random the local noises are statistically independent, so we study one single
local noise. Moreover the spatial shift (x−xi) does impact neither the PSD nor the global energy, so we
center the local noise at xi = 0. Thus we are interested in the simplified noise signal

s(x) = w

(
‖x‖
∆

) J∑
j=1

Aj cos(2πfj · x+ ϕj) = W
( x

∆

) J∑
j=1

Aj cos(2πfj · x+ ϕj) (2)

where W is the 2D radial window defined by W (x) = w(‖x‖).

1.1 Spectrum of s

The spectrum can be derived from equation (2) using standard Fourier formulas:

ŝ(f) =
∆2

2

J∑
j=1

Aje
i2πϕjŴ (∆(f − fj)) +Aje

−i2πϕjŴ (∆(f + fj)) (3)

1.2 PSD of s

To approximate the PSD |ŝ(f)|2 we assume that the windows Ŵ in equation (3) have disjoint support,
such that one can bring the modulus and the square inside the sum. This is only an approximation which
holds in our case because: Ŵ decays rapidly; the samples fj are quite evenly distributed; the sampling is

sparse; ∆ is set in inverse proportion to the sampling sparsity 1/
√
J . So the PSD can be approximated

by

|ŝ(f)|2 ≈ ∆4

4

J∑
j=1

A2
j

∣∣∣Ŵ (∆(f − fj))
∣∣∣2 +A2

j

∣∣∣Ŵ (∆(f + fj))
∣∣∣2 (4)

Thus, regardless of the symmetry around f = 0, in the paper’s section 4 “Noise by example” we state
the problem as an approximation by a weighted sum of Ŵ (∆f) centered at fj .

1.3 Energy of s

The energy

E(s) =

∫∫
|s(x)|2dx =

∫∫
|ŝ(f)|2df (5)

of the noise can be approximated from equation (4) using integration in polar coordinates:

E(s) ≈ ∆2π

 J∑
j=1

A2
j

∫ ∞
0

rw2(r)dr (6)

By targeting a constant value for the magnitude Aj on gets the formula of the paper’s section 4.3.
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2 Color

All our examples show color whereas our formula operate on scalar values. Synthesizing texture with
noise in RGB space is tedious: unseen colors can easily arise when channels are treated independently.
The solution usually consist in either using an indirection in a color table, or using a color space with
channels as independent as possible. Here we use a mix of these two approaches based on the color
representation proposed by [1]. It works well when the input texture exhibits a few dominant colors and
it avoids histogram equalization.

First a “principal variation color space” is computed as explained in [1]. It results in a few dominant
colors Di and principal variations Vi representing clusters of pixels in RGB space. Each pixel p is
represented by an index i(p) and a coordinate v(p) such that its color is approximated by Di(p)+v(p)Vi(p).

Then the indices i are sorted by increasing luminance of Di and mapped onto [−1; 1] by a piecewise
linear function I. So a value I(i(p)) is associated to each pixel p.

All algorithms are applied independently on v(p) and I(i(p)) to get v(x) and I(i(x)) at any position x.
The index is recovered as i(x) =

[
I−1(I(i(x))

]
. The final color is given by Di(x) + v(x)Vi(x).

Note that independent applications on v(p) and I(i(p)) actually requires 2J cosine evaluations (instead
of J) for each local noise. In practice, we lowered the number of evaluations for v(p) to J/2. This renders
satisfying results because v requires less precision. Thus when J cosines are mentioned in the paper,
color textures actually do 1.5J evaluations. All examples in the paper use exactly five dominant colors.

References
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3 Texturing by example recap

The input image is provided. The cosine budget J and the proportion of structure r are defined by the
user. Then texturing by example proceeds as follows. First a set of pre-processings occur on the CPU:

Compute the input PSD using Welch’s method as explained in the paper’s section 4.4.

Define A and ϕ by choosing any of the blocks used in Welch’s method.

Compute the region R that contains the structure by iteratively adding the highest-amplitude fre-
quencies as explained in the paper’s section 5.1.

Distribute the sampling budget as JR = rJ for the structure and (1 − r)J for the random-phase
noise.

Pre-process the random-phase noise on the PSD as explained in the paper’s section 4.4 (items
“Stratification” and “Sampling pre-processings” with JS = (1− r)J/L).

Pre-process the structure as explained in the paper’s section 5.3. It results in a subdivision into
square blocks and a corresponding ∆R. To each block are associated JR highest-amplitude fre-
quencies f with corresponding A(f) and ϕ(f).

Then the following data are transfered to the GPU:

• For the random-phase noise: the values of JS , ∆S and AS , as well as the tables of sub-strata
frequencies, as explained in the paper’s section 4.4.

• For the structure: the value of JR and ∆R, the number or size of blocks, and for each block the
JR selected triplets (f,A(f), ϕ(f)).

Finally for every position x the value n(x) is computed as follows:

Sampling for random-phase noise as explained in the paper’s section 4.4 (item “Sampling”): a sin-
gle sample fi,j is uniformly drawn per sub-stratum. The amplitude Ai,j is given by AS . Phase ϕi,j
is random in [0; 2π].

Evaluation of random-phase noise. The noise
∑
S nS(x) is evaluated at x by applying formula (1)

for each stratum S.

Random shifting. If periodicity breaking is required, replace the position by

x← x+
1

2
t (b2xc)

where t is a hash-code applied on both coordinates of x, as explained in the paper’s section 5.2.

Turbulence. If repetition breaking is required, set σ to the typical size of a feature in the texture and
apply the turbulence on the position:

x← x+ σnT (x)

as explained in the paper’s section 5.2.

Evaluation of structure. Find the block B in which x lies. Then evaluate the structure by

nR(x) =

I∑
i=1

w

(
‖x− xi‖

∆R

)∑
f

A(f) cos(2πf · x+ ϕ(f))

where the inside sum runs over the JR frequencies f selected for this block B, as explained in the
paper’s section 5.3.

Compute the final noise value at x by summation of the structure and the random phase noise.
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4 Results

4.1 Texture by example

Figure 1 shows texture by example synthesis, respectively (from left to right): the input, nR, nR +
random placement, and finally n. The values for J and r are provided for each example.

J = 40, r = 20%

J = 20, r = 10%

J = 30, r = 20%

J = 40, r = 10%

J = 50, r = 20%

J = 40, r = 35%

Figure 1: Texture by example.
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4.2 Textured 3D object

Figure 2: Example-based texturing and bump mapping of a 3D object (J = 40, r = 35%). Rendering
speed for this 12002 framebuffer is 58fps with texturing (J = 50 and r = 30%), 22fps with bump
mapping.
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5 Parameter tuning

In this section, we show the influence of several parameters. Two of them are tunable by the user: the
cosine budget J and r, the proportion of structure to be preserved. The other parameters are fixed in
our framework. We show them here to illustrate their influence on the result.

5.1 Cosine budget J

Five figures (numbers 3 to 7) illustrate the influence of the cosine budget that we grow from J = 30 up
to J = 60. All examples are computed with 4 strata.

Figure 3: Variable cosine budgets for the “Fabric” texture.
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Figure 4: Variable cosine budgets for the “Coral” texture.
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Figure 5: Variable cosine budgets for the “Ocean” texture.
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Figure 6: Variable cosine budgets for the “Peaua” texture.
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Figure 7: Variable cosine budgets for the “Skin” texture.
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5.2 Proportion of structure r

Figure 8 is an extension of figure 6 in the paper. It shows additional steps in defining the proportion of
structure. The accompanying video shows some interactive tuning of this parameter.

|R| = 0% 0.2% 0.8% 2.8% 7.8% 14% 100%
r = 0% 5% 10% 20% 30% 40% 100%

(a) Region R. Full power spectrum on the right

(b) Synthesis of nR

(c) Synthesis of n

Figure 8: Fixed phases for high-energy regions. From left to right the region R grows while its energy
interval gets larger. r is the percentage of preserved energy. |R| denotes the percentage of frequencies
in R w.r.t. the full spectrum. The corresponding structure nR better captures structures until being
equal to the input (right). The final noise n exchanges randomness for faithfulness. The cosine budget
is J = 50.
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5.3 Window size ∆

Random-phase LRP noise based on discrete spectra resulting from input images are shown in figures 9, 10
and 11. All examples were computed with a cosine budget of J = 50 and 4 strata. In these examples,
∆ is computed according to the formula of section 4.4 and then modified artificially by different factors
(see figures).

One can notice that enlarging ∆ results in bad spectral coverage and a synthesized texture with
artifacts. Conversely, shrinking ∆ results in spectral leakage. Using ∆ according to our formula is a
good compromise in all our examples.

Input

(a) Example image, its PSD and 4 strata

Output

∆/8 ∆/2 ∆ 2∆ 8∆

(b) Synthesis of n

(c) FFT of n

Figure 9: Variable window sizes for the Concrete texture.
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Input

(a) Example image, its PSD and 4 strata

Output

∆/8 ∆/2 ∆ 2∆ 8∆

(b) Synthesis of n

(c) FFT of n

Figure 10: Variable window sizes for the Granite texture.
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Input

(a) Example image, its PSD and 4 strata

Output

∆/8 ∆/2 ∆ 2∆ 8∆

(b) Synthesis of n

(c) FFT of n

Figure 11: Variable window sizes for the Skin texture.
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5.4 Number of subdivisions

Figure 5.4 illustrates the iterative algorithm of section 5.3. After each subdivision step, block-wise FFTs
are computed and the JR = 32 highest-energy frequencies are stored (red) and used for evaluation of
nR. One can see that for the first iterations, this is not sufficient to reproduce the reference structure
image (figure 12(e)). After roughly 3 iterations, the resulting image is sufficiently close to the expected
result. 32× 82 = 2048 amplitudes and phases have to be stored in this case.

(a) Iteration 0

(b) Iteration 1

(c) Iteration 2

(d) Iteration 3

(e) Complete PSD (left), PSD on R (center) and structure image (right).

Figure 12: Example of subdivisions of an input texture of size 2562. In figure 12(e), the structure image
(right) is obtained by inverse FT of the spectrum of a region R (left). The first column in the full
figure denotes the subdivided structure image. The second one the block-wise PSDs. The third one the
JR = 32 block-wise selected frequencies. The last one is composed of assembled block-wise nR evaluated
from the JR stored frequencies.
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5.5 Turbulence magnitude

Our turbulence function is controlled by the spectrum. Therefore, it respects its anisotropy and can
be controlled at will using the parameter σ (see the paper’s section 5.2). In figure 13, we show several
variants for σ which can all be valid depending on the users will. Note that compared to Perlin’s
turbulence, the anisotropy is better preserved, for example in figure 13(c). On the other examples,
results are comparable.

σ = 0 σ = 4 σ = 8 σ = 12 turb. image Perlin(σ = 6) turb. image

(a) Paint Peel

σ = 0 σ = 2 σ = 4 σ = 8 turb. image Perlin(σ = 6) turb. image

(b) Skin

σ = 0 σ = 6 σ = 10 σ = 20 turb. image Perlin(σ = 6) turb. image

(c) Wood

Figure 13: Variable turbulence values.
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