
Pointer Program Derivation using Coq:
Graphs and Schorr-Waite Algorithm

Jean-François Dufourd ?

University of Strasbourg - CNRS, ICUBE Laboratory,
Pôle API, Boulevard S. Brant, CS 10413, 67412 Illkirch, France - jfd@unistra.fr

Abstract. We present a specification, a derivation and total correctness
proofs of operations for bi-functional graphs implemented with pointers,
including the Schorr-Waite algorithm. This one marks such a graph with
an economical depth-first strategy. Our approach is purely algebraic and
functional, from a simple graph specification to the simulation of a tail-
recursive imperative program, then to a true C pointer program by el-
ementary classical transformations. We stay in the unique higher-order
formalism of the Calculus of Inductive Constructions for specifications,
programs and proofs. All the development is supported by Coq.

1 Introduction

The Schorr-Waite (in short SW) algorithm [31] traverses iteratively a bi-functional
graph coded by pointers in depth-first order from an initial vertex and marks
all the visited vertices. The problem is classical, but the solution of Schorr and
Waite is inexpensive because it avoids any auxiliary storage by a clever use of
temporarily unemployed graph pointers. Such an algorithm is useful in the cell
marking step of a garbage collector, when the available memory is scarce. Many
researchers used this algorithm as a benchmark to test manual (or little auto-
mated) methods of program transformation and verification [32, 33, 8, 20, 19, 17,
9, 4, 28, 34]. Since 2000, studies have addressed the proofs with automatic tools,
for partial or total correctness [3, 1, 27, 22, 26, 15, 29]. Indeed, the proof of to-
tal correctness is considered as the first montain to climb in the verification of
pointer programs [3].

Here, we report a new experiment of formal specification, derivation and total
correctness proof of a bi-functional graph datatype with its concrete operations,
including the SW algorithm whose study is particularly difficult. We highlight
the following novelties of the derivation process:
• Formalism. We stay in the general higher-order Calculus of Inductive Con-
structions (in short CiC) formalism for specifications, programs and proofs, and
use the Coq proof assistant as single software tool [2]. The only added axioms
are proof-irrelevance, extensionality, and an axiom of choice for a fresh address
during an allocation. We thus intentionally avoid assertions method and Hoare
logic underlying most works in verification of programs.

? This work was supported in part by the French ANR white project Galapagos.

• Abstract level. We first focus on the algebraic specification in Coq of ab-
stract datatypes. We define by structural or Noetherian induction the results as
abstract functions and prove required properties.
• Concrete level. We specify a memory algebraic type with pointers in which
we implement the abstract specification. We seek morphisms carrying properties
from abstract to concrete levels.
• Programming. Coq does an extraction in OCaml, while forgetting proof-
parameters. Memory parameters are removed to go into an imperative program.
• Orbits. At the abstract and concrete levels, the orbit notion helps to manage
the track of function iterations, e.g. to concisely write type invariants and to
manage linkage traversals as in shape analysis [21]. Orbits were approached in
[6, 30, 3, 27, 21] and deeply studied in [13]. They allow to deal with separation
problems [30] without extending the CiC. To specify combinatorial hypermaps
[18, 10], and to derive imperative pointer geometric datatypes and programs, or-
bits are particularly efficient [14]. So, our correctness proof of the SW algorithm
can be considered as another case study for orbits.
• SW algorithm. Finally, this process provides a version of the SW algorithm
acting on any marked bi-functional graph, for which there is a proof that the cor-
responding operation is idempotent, i.e. it has the same effect whatever applied
once or several times.

Sect. 2 specifies marked bi-functional graphs and Sect. 3 a depth-first graph
marking. Sect. 4 defines internal stacks and Sect. 5 constructs a depth-first mark-
ing with them. Sect. 6 specifies memories and Sect. 7 defines a graph-memory
isomorphism. Sect. 8 carries the marking with internal stack from graph to mem-
ory. Sect. 9 extracts it into an OCaml function, which is transformed “by hand”
into an iterative C-program. Sect. 10 proves that the initial specification fits well
with reachability. Sect. 11 presents work related to the SW algorithm, and Sect.
12 concludes. The complete Coq development (with proofs) is available on-line
[12], including [13]. A preliminary French version, with another specification, is
in [11]. A basic knowledge of Coq makes the reading of this article easier.

2 Bi-functional graphs

Basic definitions. As in Coq [2], we write nat for the type of natural numbers.
We assume that undef and null, not necessarily distinct, code particular natural
values. In this work, a (marked bi-functional) graph g = (E,mark,son0,son1) is a
finite subset E of vertices (or nodes) in nat - {undef,null}, so-called support of
g, equipped with three functions: mark returning a number inside {0,1,2}, son0
and son1 returning natural numbers named left and right sons, which do not
necessarily belong to E. An example is given in Fig. 1(Left), with E = {1,...,8},
marks in the vertex circles (filled with blank, light or dark grey depending on
the mark value: 0, 1 or 2), son0 and son1 represented by arcs with labels 0 or 1.

In the specification, the functions are extended at the whole nat: outside E,
mark returns 0, and son0, son1 return undef. To avoid tedious elementary tests,
we first inductively (here just enumeratively) define in Coq the mark type nat2

0

0

1

1

1 6

7

2

5

3

0

4 1

00

0

0 0

0

0

1

1

2

8

0

0

0 1 1

0

1

undef

null

9 1

Left: Initial graph

0

0

1

1

6

7

2

5

3

0

4 1

0

0

0

0

1

1

2

8

0

0

0 1 1

0

1
2

2

2

null

undef

t = 1 9 1

Right: Final graph

Fig. 1. Graph before (Left) and after (Right) depth-first marking from t = 1.

(Type is viewed as the “type of types”). Then, it is convenient to inductively
define the type graph by two constructors: vg, returning the empty (or void)
graph, and iv g x m x0 x1, inserting in the graph g a new vertex, x, with its
mark, m, and its two sons, x0 and x1:

Inductive nat2 : Type:= zero : nat2 | one : nat2 | two : nat2.
Inductive graph : Type:= vg : graph | iv : graph -> nat -> nat2 -> nat -> nat -> graph.

Observers and graph invariant. A predicate, exv g z, for testing the ex-
istence of any z:nat in a graph g is recursively defined in Coq by a pattern
matching on graph (Prop is the type of propositions and is a placeholder).
Then, functions mark and son are also recursively written in functional style
(son0, son1 are compacted into a unique son parameterized by a label k = 0 or
1). However, to construct only well-formed graphs, the calls of iv must respect
the precondition prec iv. So, if necessary, graph may be constrained by the
invariant inv graph (~ is written for not and <> for 6=):

Fixpoint exv(g:graph)(z:nat): Prop:=
match g with vg => False | iv g0 x _ _ _ => x = z \/ exv g0 z end.

Definition prec_iv(g:graph)(x:nat): Prop := ~ exv g x /\ x <> null /\ x <> undef.
Fixpoint inv_graph(g:graph): Prop :=
match g with vg => True | iv g0 x m _ _ => inv_graph g0 /\ prec_iv g0 x end.

Other graph observers are similarly defined: nv is the number of vertices and
marksum is the sum of the mark values of the existing vertices. Numerous results
on them are proved, often by structural induction on graph, e.g. the lemma:

Lemma marksum_bound: forall g, marksum g <= 2 * nv g.

Mutators. Functions to update graphs are also written: chm g z m changes
the mark of z into m, and cha g k z zs the k-th son (or arc, for k = 0 or 1)
of z into zs. They preserve the graph invariant and enjoy properties of idem-
potence, permutativity and absorption which are essential in the following, e.g.
(eq_nat_dec tests the equality in nat):

Lemma chm_chm: forall g z1 m1 z2 m2,
chm (chm g z1 m1) z2 m2 = if eq_nat_dec z1 z2 then chm g z2 m2 else chm (chm g z2 m2) z1 m1.

Lemma chm_idem: forall g z, chm g z (mark g z) = g.
Lemma cha_chm: forall g x y z k m, k <= 1 -> cha (chm g z m) k x y = chm (cha g k x y) z m.

3 Specification of depth-first marking

Preliminaries. We slightly enlarge the traditional marking problem: (i) we deal
with any graph g, i.e. equipped with any marking (between 0 and 2) and any
sons (in the support of g or not); (ii) starting from any natural number t, the
problem consists in traversing in depth-first order the subgraph of g of all the 0-
marked vertices reachable from t and in marking them by 2. Fig. 1(Right) gives
the final marking of the graph in Fig. 1(Left) when t = 1. With this setting,
the stopping condition of the depth-first traversal from any t is:

Definition stop g t := ~ exv g t \/ mark g t <> 0.

Then, naming stop dec the function which tests if stop g t is satisfied or not
(stop is easily proved decidable), the entire problem is solved by the function
which we name df and define in Coq syntax as follows (surrounded by quotes
because this non-primitive recursive definition is not accepted as such by the
Coq system):

"Definition df(g:graph)(t:nat): graph :=
if stop_dec g t then g
else let g0 := df (chm g t two) (son g 0 t) in df g0 (son g 1 t)."

As other authors [19, 33, 9], we consider that df explicitly states the problem
as simply as possible, as if g was a binary tree. From now on we consider it as
our specification. Unfortunately, such a recursive definition cannot be directly
written in Coq without dealing with termination. Moreover, the nested (double)
recursion adds a difficulty. But such problems of general recursion can be over-
come in Coq [2] (p. 419-420, for numerical problems).

True Coq specification. First, we define a graph measure, mes, which will
decrease at each recursive call. Then, we consider two binary relations on graph:

Definition mes g := 2 * nv g - marksum g.
Definition ltg g’ g := mes g’ < mes g.
Definition leg g’ g := mes g’ <= mes g.

They are a strict and a large preorder, ltg is Noetherian (or well-founded), and
the use of chm inside df’s body decreases mes. In fact, the termination of df needs
ltg (chm g t two) g, which is immediate, and ltg g0 g, which is satisfied if
leg g0 (chm g t two). This requires as result a graph, and also the fact that
this graph is less than or equal to g. In Coq, such a result has the existential type
depending on g denoted by {g’:graph | leg g’ g}, as for usual mathematical
subsets. Then, an auxiliary function of df, named df aux, with a result of this
type, has itself a functional type which is defined by:

Definition df_aux_type := fun g:graph => nat -> {g’:graph | leg g’ g}.

So, df aux must be a function which transforms a graph, g:graph, into a function
which in turn transforms t:nat into a pair, (g’, H’), where g’ is the marked
graph and H’ a proof of leg g’ g. The building of df aux corresponds with the

proof of a theorem. Indeed, Coq implements the Curry-Howard correspondence,
stating that proofs and functions are isomorphic. The proof, which has roughly
the skeleton of df’s informal specification, uses our results on the decreasing of
mes in the recursive calls of df. We do not give the exact definition of df aux

which is rather technical, but the interested reader may consult [11]. Finally,
remembering that exist is the Coq constructor of {g’:graph | leg g’ g},
the “true” df is obtained by extracting the witness of the result, i.e. the marked
graph g’:

Definition df(g:graph)(t:nat): graph := match df_aux g t with exist g’ _ => g’ end.

Of course, the termination of df aux, and of df, is automatically ensured by
these constructions. The definition of df is rather mysterious for non-specialists,
but the following properties are illuminating.

Properties of the Coq specification. Most properties of df are obtained by
Noetherian induction on df aux using built-in recursors. First of all, df pre-
serves inv graph, the initial graph vertices and sons, and the marking is always
increasing. An important result − absent from all studies considering an initial
marking with 0 only −, is that df is idempotent, i.e. reapplying it does not change
the result. Finally, we exactly obtain the expected original definition of df by
proving the fixpoint equation df_eqpf. So, since it possesses all the properties we
want to prove, df is a solid reference for transformations towards a real program:

Lemma inv_graph_df: forall g t, inv_graph g -> inv_graph (df g t).
Lemma exv_df: forall g t z, exv (df g t) z <-> exv g z.
Lemma son_df: forall g t z k, son (df g t) k z = son g k z.
Lemma mark_le_mark_df: forall g t z, mark g z <= mark (df g t) z.
Lemma df_idem: forall g t, df (df g t) t = df g t.
Theorem df_eqpf: forall g t,

df g t = if stop_dec g t then g
else let g0 := df (chm g t two) (son g 0 t) in df g0 (son g 1 t).

4 Succession function, orbits, internal stack

Orbits. Now, we simulate an (internal) stack inside a graph g , thanks to a total
function succ:

Definition succ g z :=
if eq_nat_dec z null then null
else if eq_nat_dec (mark g z) 0 then null else son g ((mark g z) - 1) z.

This function can be iterated: for any integer k, the k-th iterate of succ g from
z is zk := Iter (succ g) k z, where Iter is the classical iteration functional
(with z0 = z). The iterates form in g’s support a list that we call the orbit of
z. We studied this notion in a general way [13]. Here, it is used to express that
such a list always ends on null, outside g’s support.

Internal stack. For us, the orbit of z in g’s support − the orbit length is
written lenorb g z − is an internal stack if it satisfies the following invariant:

Definition inv_istack g z : Prop :=
let r := lenorb g z in let zr := Iter (succ g) r z in let zr_1 := Iter (succ g) (r-1) z in

zr = null /\ (0 < r -> 1 <= mark g zr_1 <= 2).

z1 z0=
zr = null

z1 r−1
2 z3

1 z2

z1
1

1 0 0 00

(top)(basis)
Graph support

Fig. 2. Shape of a (non-empty) internal stack, with r = 5.

In Fig. 2, r (= 5) gives the internal stack height, whereas z (= z0) and zr 1

can be viewed as its top and basis when the orbit is non-empty. Consequently, all
the internal stack elements are (genuine) non-zero marked vertices of g. Inter-
nal stacks are affected by mark or son updates. For general orbits, the different
updating cases are thoroughly analyzed [13] as in shape analysis [21]. However,
the SW algorithm only uses some particular configurations which are related to
three basic operations, which we present now.

Internal stack operations. They are defined as follows:

Definition ipush g t p := cha (chm g t one) 0 t p.
Definition iswing g t p := cha (cha (chm g p two) 0 p t) 1 p (succ g p).
Definition ipop g t p := cha g 1 p t.

• ipush g t p pushes a vertex t on an internal stack whose top is p, after a
change of t’s mark into one (Fig. 3(a1)). Its precondition requires that t is a
true zero-marked vertex. After ipush g t p, p remains the top of an internal
stack, but t is also the top of another one including the former. The left son of
t is now used to access to t’s successor, i.e. p, in the new stack.
• iswing g t p is a rotation at the top p of an internal stack to change its sons
after change of its mark from one into two. This “stack” operation is emblematic
of the SW algorithm (Fig. 3(b1)): iswing g t p replaces the left son which led
to the successor in the internal stack by the right son, reestablishing the initial
left son of p into t, p being no more father of its true right son.
• ipop g t p pops from an internal stack p its top (i.e. p), and reestablishes
its right son. The precondition requires that p’s mark is two (so exv g p is
verified) (Fig. 3(c1)): after ipop g t p, succ g p is the top of the remaining
stack, whose height decreases by 1 and which might become empty.

It is proved that these operations preserve the graph and internal stack in-
variants, the graph vertices, and that ipush and iswing add 1 to the mark sum,
whereas ipop leaves it unchanged.

2
0

1

p

t

new parameters

2

0 1

p 2

0 1

p

t

(c1) (c2)

g t pipop

0

0 1

p

t 1

0

1

p

t

t

1

0

1

p

(a1)

new parameters

(a2)

ipush g t p

1

0

1

p

t

2

0

1

p

t t

2

0

1

p

(b1)

new parameters

(b2)

g t piswing

t

Fig. 3. Operations on internal stacks.

5 Depth-first marking using an internal stack

Cartesian product. To simulate the SW algorithm, we have to deal with the
type, named graphistack, of the pairs (g,p) composed of a graph g and an
internal stack top p (In Coq, * is the Cartesian type product, used with %type

to remove ambiguities). We equip it with the invariant inv graphistack (fst
and snd are the classical projections). This invariant is satisfied with the empty
internal stack and is preserved by each of the three operations defined in Sect. 4:

Definition graphistack := (graph * nat)%type.
Definition inv_graphistack(gp:graphistack) := inv_graph (fst gp) /\ inv_istack (fst gp) (snd gp).

Designing the algorithm. The algorithm we look for is simply tail-recursive.
For the parameter gp = (g,p), its termination will be warranted by the strict
decreasing of the measure 2 * mes g + lenorb g p at each recursive call in-
volving one of the operations ipush, iswing or ipop. Our previous results entail
this decreasing. So, a suitable binary relation on graphistack is ltgip, which
is quickly proved to be a Noetherian strict preorder:

Definition ltgip (gp’ gp:graphistack) := let (g’,p’) := gp’ in let (g,p) := gp in
2 * mes g’ + lenorb g’ p’ < 2 * mes g + lenorb g p.

The same method as for df allows us to define dfi, our new recursive marking
function with internal stack. A large preorder is useless since the algorithm is sim-
ply recursive. However, the proofs of measure decreasing need inv graphistack

at each recursive call. So, for the result of our auxiliary function dfi aux,
whose type is dfi aux type, we introduce the subtype {gp:graphistack |

inv graphistack gp}. We then complete the stopping predicate stop of df

into stopi:

Definition dfi_aux_type :=
fun gp:graphistack => inv_graphistack gp -> nat -> {gp’:graphistack | inv_graphistack gp’}.

Definition stopi p g t := p = null /\ stop g t.

The algorithm stops when p is null, and t is not in g or has a non-zero mark,
the corresponding testing function being stopi dec. To construct dfi aux, the
method is similar to that of df aux (Sect. 3), following the subsequent informal
specification written in Coq pseudo-code. The new parameters g, p, t for the
three recursive internal calls to dfi aux corresponding to ipop, iswing and
ipush are given in Fig. 3(a2,b2,c2):

"Definition dfi_aux (g, p) t :=
if stopi_dec p g t then (g, p)
else if stop_dec g t

then if eq_nat_dec (mark g p) 2
then dfi_aux (ipop g t p, son g 1 p) p
else dfi_aux (iswing g t p, p) (son g 1 p)

else dfi_aux (ipush g t p, t) (son g 0 t)"

Finally, dfi is obtained by the projection of dfi aux on the graph component
when starting with an empty stack (inv graphistack null g hg is a proof that
inv graphistack is satisfied for the genuine graph g with the empty stack):

Definition dfi (g:graph)(hg:inv_graph g)(t:nat) : graph:=
match dfi_aux (g,null) (inv_graphistack_null g hg) t with exist (g’,s) _ => g’ end.

Note that dfi keeps a proof argument, hg:inv graph g. Besides, a fixpoint
equation similar to the above informal specification is proved for dfi aux in the
same way as for df (Sect. 3).

Total correctness of the algorithm. The termination of dfi being automat-
ically ensured, the great question is the partial correctness of dfi with respect
to df. In fact, our fundamental result is the identity between dfi and df: for the
same g and t, they return the same graph regardless of what the actual proof
argument hg for dfi is:

Theorem df_dfi : forall g hg t, dfi g hg t = df g t.

The proof uses a new iteration function on an argument gp:graphistack [11]
and the general properties of orbit update operations, particularly the mutation
[13]. The consequences are numerous, since all the nice properties of df are imme-
diately transposed to dfi, e.g. preservation of the graph invariant, preservation
of the initial vertices and sons, mark growing, idempotence (Sect. 3). As far as
the SW algorithm, we could stop the study at this point, considering that the
path is well traced towards an imperative iterative C-program for an experienced
programmer, especially since df is simply tail-recursive. But a lot of implemen-
tation problems are still to be solved, particularly regarding pointers, because

the graph which we use for convenience is a “ghost”, i.e. it does not explicitly
appear in the final program. Indeed, in imperative programming, a function like
dfi should only be parameterized by an address t. So, we now model memories
to translate our graph specification into a C-program.

6 Memory model

Cells and memory. Advanced memory models allow to capture allocator sub-
tleties which are useful to prove the correctness of compilers or intricate programs
with composite data [25]. Our present goal being to derive only one structured
program on a unique datatype, our memory model is directly specialized to-
wards a graph pointer representation. Memory cells are of the following type,
cell, where mkcell is the constructor, and val, s0, s1 are field selectors, for
mark, left and right sons. An exception cell, initcell, is defined. Rather than
giving a complex − dangerous in sense of consistency − axiom system, we found
it safe to algebraically define the memory type Mem as follows:

Record cell:Type:= mkcell {val : nat2; s0 : nat; s1 : nat}.
Definition initcell := mkcell zero undef undef.
Inductive Mem:Type:= init : Mem | alloc : Mem -> nat -> cell -> Mem.

The addresses are simulated by natural numbers, init returns the empty mem-
ory, and alloc inserts in a memory a cell value at a (new) address, during an
allocation. Our memories are finite, unbounded, and allocations never fail.

Memory operations. Now, a predicate exm tests if an address is valid in a
memory, i.e. corresponds to an allocated cell. Then, the usual functions, load,
free and mut, respectively to get from an address a cell contents, to free a
cell (and its address), and to change a cell contents giving its address, are easily
defined by pattern matching [11]. However, allocations must satisfy the following
precondition, which leads to an invariant inv Mem for Mem:

Definition prec_alloc M a := ~exm M a /\ a <> undef /\ a <> null.
Fixpoint inv_Mem(M:Mem): Prop :=

match M with init => True | alloc M0 a c => inv_Mem M0 /\ prec_alloc M0 a end.

A lot of lemmas about the behavior of the operations are proved by induction
on Mem. We have mimicked more realistic programming primitives, particularly
a C-like malloc returning from a memory a fresh address, thanks to an address
generator, whose behavior is governed by a dedicated axiom [11].

7 Memory to graph, graph to memory

Abstraction and representation. We define two operations: Abs, to abstract a
memory into a graph, and Rep to represent a graph as a memory, the reversibility
of which is confirmed by the following theorems:

Fixpoint Abs(M:Mem): graph :=
match M with init => vg | alloc M0 a c => iv (Abs M0) a (val c) (s0 c) (s1 c) end.

Fixpoint Rep (g:graph) : Mem :=
match g with vg => init | iv g0 x m x0 x1 => alloc (Rep g0) x (mkcell m x0 x1) end.

Theorem Rep_Abs : forall M, Rep (Abs M) = M.
Theorem Abs_Rep : forall g, Abs (Rep g) = g.
Theorem inv_graph_Abs : forall M, inv_Mem M -> inv_graph (Abs M).
Theorem inv_Mem_Rep : forall g, inv_graph g -> inv_Mem (Rep g).

Transposition of operations and properties. Graph operations are imple-
mented by load and mut into memory ones, here with the same name preceded
by “R”, e.g. Rcha and Rchm. In fact, Abs and Rep make graph and Mem isomorphic.
So, the behavioral proofs of graph operations are simply carried on Mem:

Lemma Rchm_chm : forall M x m, Rchm M x m = Rep (chm (Abs M) x m).
Lemma chm_Rchm : forall g x m, chm g x m = Abs (Rchm (Rep g) x m).
Lemma Rcha_cha : forall M k x y, Rcha M k x y = Rep (cha (Abs M) k x y).
Lemma cha_Rcha : forall g k x y, cha g k x y = Abs (Rcha (Rep g) k x y).

8 Depth-first marking in memory

Specification of marking in a memory. The predicates stop and ltg be-
come Rstop and Rltg for memories. The lemmas we had for df are transposed
to specify the (nested) recursive depth-first marking Rdf in memories, with ex-
change theorems. Consequently, all the properties of df in graph are transposed
to Rdf in Mem, e.g. we have a fixpoint equation, Rdf eqpf, similar to df eqpf:

Theorem df_Rdf : forall g t, df g t = Abs (Rdf (Rep g) t).
Theorem Rdf_df : forall M t, Rdf M t = Rep (df (Abs M) t).

Depth-first memory marking with internal stack. Operations ipush, iswing
and ipop are easily transposed for Mem into Ripush, Riswing and Ripop with
the same properties. Then, the counterpart of graphistack is Memistack, with
the invariant inv Memistack:

Definition Memistack := (Mem * nat) %type.
Definition inv_Memistack(Mp:Memistack) := inv_Mem (fst Mp) /\ inv_Ristack (fst Mp) (snd Mp).

At stopi and ltgip correspond Rstopi and Rltgip. The definition of the mark-
ing in memory with internal address stack, i.e. Rdfi (with Rdfi aux), follows.

Total correctness. Of course, Rdfi is terminating. Then, by our isomorphism
graph - Mem, we transpose in Mem our proof of correctness of dfi w.r.t. df into a
proof of correctness of Rdfi w.r.t. dfi. Better, we have for free the correctness
of Rdfi w.r.t. our specification df in graphs:

Theorem Rdfi_dfi : forall (M : Mem) (hM : inv_Mem M) (t : nat),
Rdfi M hM t = Rep (dfi (Abs M) (inv_graph_Abs M hM) t).

Theorem Rdfi_df : forall (M : Mem) (hM : inv_Mem M) (t : nat),
Rdfi M hM t = Rep (df (Abs M) t).

9 Towards concrete programming

Extraction in OCaml. The extraction-of-functional-program Coq tool [2] leads
to an OCaml version of our development. Hence, after an elementary substitu-
tion, we get the following program for Rdfi aux and Rdfi (in OCaml, “R” and
“M” are in lower case, the Coq decision functions, Rstopi dec and Rstop dec,
become Boolean functions, and the natural numbers are in Peano notation).
As usual, the extraction removes all the proof-terms and retains the common
data only. A functional form of the SW algorithm follows. Since rdfi aux is
tail-recursive, it will be easy to write it iteratively without a stack:

let rec rdfi_aux m p t =
if rstopi_dec p m t then (m, p)
else if rstop_dec m t

then if eq_nat_dec (rmark m p) (S (S O))
then rdfi_aux (ripop m t p) (rson m (S O) p) p
else rdfi_aux (riswing m t p) p (rson m (S O) p)

else rdfi_aux (ripush m t p) x (rson m O t)
let rdfi m t = fst (rdfi_aux m null t)

Derivation of a C-program. From the OCaml version, we derive graph im-
perative operations. We first define in C the types of cells and addresses, which
were integers (nat2 is suppressed for simplicity):

typedef struct strcell {nat val; struct strcell * s0; struct strcell * s1;} cell, * address;

As usual in C, null is written NULL, the memory is implicit and modified by side-
effects. As far as the SW algorithm, Fig. 3(a2,b2,c2) explains how the parameter
pair (p, t) mutates by ripush, riswing and ripop, like in the functional ver-
sion. An auxiliary variable, q, is used to serialize C assignments. We can as usual
replace exm t by t != NULL, and the way undef is translated is not important.
Finally, we transform the tail-recursion into an iteration, unfold all internal func-
tions, and the imperative iterative (ingenious) SW procedure looks like a variant
of the C version in [22], where each mark is coded by two bits. The procedure
works correctly regardless of what the initial marking is, the standard situation
− all marks are 0 − being just a particular case:

void rdfi(address t){
address p = NULL, q;
while (!(p == NULL && (t == NULL || t->val != 0)))){

if(t == NULL || t->val != 0){
if(p->val==2) {q = p->s1; p->s1 = t; t = p; p = q;}
else {p->val = 2; q = p->s0; p->s0 = t; t = p->s1; p->s1 = q;}

}
else {t->val = 1; q = t->s0; t->s0 = p; p = t; t = q;}

}
}

10 Back to the specification

Although the starting point of numerous studies, df can be considered as too
constructive w.r.t. the reachability (Sect. 3) [19, 27, 22, 26, 24]. If reachable g t

z means that, in g, z can be reached from t only via zero-marked vertices, its
definition can be (nat2 to nat maps nat2 into nat):

Fixpoint reachable(g:graph)(t z:nat): Prop : match g with
vg => False

| iv g0 x m x0 x1 => reachable g0 t z \/ nat2_to_nat m = 0 /\
(x = t /\ x = z \/ (x = t \/ reachable g0 t x)
/\ (x0 = z \/ reachable g0 x0 z \/ x1 = z \/ reachable g0 x1 z))

end.

Under some simple conditions, reachable g is proved decidable (with decision
function reachable dec), reflexive and transitive. The specifications reachable
and df should be compared. We did it through a simply recursive marking,
named dfs, using a classical external vertex stack and enjoying the same behav-
ior as dfi. So df = dfs, and since df = dfi (Sect. 5), then df = dfs = dfi.
Finally, the following theorem fully characterizes the effect of dfs, and df, on
all g’s vertices. It also entails the correctness of dfi, and Rdfi, with respect to
reachability:

Theorem reachable_dfs : forall g hg t z, mark (dfs g t hg) z =
if reachable_dec g t z then if stop_dec g z then mark g z else two else mark g z.

In summary, the whole derivation process is synthesized in Fig. 4 where all
functions, relations, equalities, isomorphisms and equivalences appear.

dfs g t H

reachable g t z

=

== df g t

Rdf M t

∼

dfi g t H

Rdfi M t H

∼

rdfi M t

rdfi t

ABSTRACT DATATYPE

REPRESENTATION

EXTRACTION

PROGRAMMING

Fig. 4. Derivation levels, functions and relations.

11 Work related to Schorr-Waite algorithm

Pioneering work. The SW algorithm, discovered independently by Deutsch
([23], p. 417) was published as a routine for garbage collection [31]. Many pro-
gram constructions by derivation, e.g. by Griffiths [20], start with a doubly re-
cursive imperative procedure, introduce progressively (internal) stack elements,
and show that transformations preserve good properties.

Topor and Suzuki give the first formal proofs “by hand” [33, 32]. Topor in-
troduces predicates and procedures comparable to df, dfs and dfi, but acting

on sets and lists with side-effects. The proof applies the intermittent assertions
method, with an induction on the data structure size that our graph inductions
sometimes remind. Suzuki develops an automatic program verifier able to deal
with pointers, but his attempt on the SW algorithm remains incomplete.

Gries publishes a correctness proof of the SW program using the assertions
method with weakest preconditions [19]. In a vertex array simulating the mem-
ory, the graph is represented by a set of paths. Morris writes a proof in the
same spirit using Hoare logic [28]. Gerhart [17] proposes a proof by derivation
from an abstract problem of transitive closure to Gries’s program using sets,
sequences and arrays. The proof using the assertions method is partially ver-
ified by Affirm. Following Topor’s proof, de Roever [8] illustrates the greatest
fixpoint theory by the total correctness of a SW algorithm which is far enough
a way from the C program. Dershowitz revisits in rather informal style the SW
algorithm derivation and proof for vertices with d sons [9]. He starts with a
recursive procedure having an internal loop, progressively introduces counters,
then an internal stack, and ends with a version including two goto’s. Ward uses a
transformational model-based method to set the problem then to derive in WSL
and prove the SW algorithm [34]. It uses transformation rules which are proved
correct, thus avoiding to prove the correctness of the derivation itself.

Broy and Pepper use algebraic specifications to derive and prove the total
correctness of the algorithm [4]. They specify marked vertex sets, then 2-graphs
as sets with 2 functions. An axiom of permutativity forces to use an equality mod-
ulo for graphs. The same in Coq would alter Leibniz equality and prevent proofs
of equality for functions returning graphs. This explains our focus on the graph

specification. The starting point is a doubly recursive procedure acting on a set
and a graph. They algebraically specify generic arrays to simulate memories.
Several imperative procedures are obtained thanks to a generic transformation
rule eliminating double recursions. The last version mentions a set and a path
and is still far from the C program. Our study can be viewed as a logical con-
tinuation of this work.

Work using automated tools. Following Burstall [6], Bornat [3] gives a ra-
tionale to prove pointer programs in Hoare logic with semantic models of stack
and heap. In a memory (heap) viewed as an array, he follows iterated addresses
by an f function, defines f-linked sequences, and studies their dynamic behavior.
The SW algorithm is partially verified in the proof editor Jape [3].

Abrial uses the model-based Event B method to refine and merge (in 8 steps)
specifications given by separate elementary assignments into a final pointer pro-
gram [1]. Invariants, with pre-postconditions on sets and relations are progres-
sively built with proof obligations. The Atelier B is used to prove the partial
correctness, 70% automatically.

Mehta and Nipkow propose an Isabelle framework to prove pointer programs
in higher-order logic [27]. They implement a small language for annotated pro-
grams and tools to reason in Hoare logic with a semantic model of heap and
stack. A special attention is paid to capture separation properties [3, 30] with

list and path abstractions. They prove the partial correctness of two versions of
the SW algorithm from Bornat’s work [3].

Loginov et al. elaborate a completely automated proof of total correctness us-
ing three-valued logic, with deep analysis of reachability in pointer structures, but
only for binary trees or dags [26]. Hubert and Marché use the assertion method in
the Caduceus system for a direct proof of a C source version of the SW algorithm
[22]. A big invariant concerns the evolution of reachability, marking, stack, sons,
paths, etc. They automatically prove about 60% of the correctness, the rest, e.g.
termination, being left to Coq (about 3000 lines). Bubel relates a proof part of a
Java implementation. The specification in Java Card DL is based on reachability,
the proofs use the KeY system but do not mention termination [5].

Leino describes in Dafny a very performing implementation. Big pre-, post-
conditions and loop invariant group four kinds of properties. The total correct-
ness verification is automatic (in a few sec.) thanks to SMT solvers [24]. However,
the author says he finally prefers a method by refinement, like [1]. Yang uses the
relational separation logic to show that the SW algorithm is equivalent to a
depth-first traversing, but he mentions no automation [35].

Giorgino et al. study a method by refinement, first based on spanning trees
then enriched to graphs, for the total correctness of the SW algorithm, using
Isabelle/HOL [15]. Finally, they use state-transformers and monads (in Isabelle)
to deal with imperative programs. Proteasa and Back present the invariant based
programming, a refinement approach by predicate transformers supported by
invariant diagrams [29]. A diagram contains the information necessary to verify
that each derivation towards the SW algorithm is totally correct. The process
has been verified by Isabelle.

12 Conclusion

Coq development. We derived a graph library and the SW algorithm, and
proved their total correctness with Coq. The development from scratch repre-
sents about 8,400 lines, with 480 definitions, lemmas or theorems. That is the
price for such a complete study with a general proof assistant.

Advantages of our approach. We deal with a single powerful logical frame-
work, i.e. CiC and Coq, at abstract and concrete levels. Coq allows us to simulate
algebraic datatypes with inductive types equipped with preconditions and invari-
ants. It offers good facilities for general recursive functions if proof parameters
are added to address nested recursions [2]. This is facilitated by the mechanism
of dependent type.

Our approach is global because, at the two levels, graph types and operations
have to be specified, implemented and proved correct all together. Constraints
are distributed among invariants, preconditions and proof-parameters. So, big
complex invariants, as in monolithic proofs of the SW algorithm, are broken in
several pieces easier to manage.

Besides, orbit features allow to express predicates about data separation or
collision at high and low levels in a synthetical way [13, 14].

Abstraction and representation morphisms carry on operations and proper-
ties, which are proved once, and, with extensionality, help to prove the equality
of functions. The final step towards programming uses the extraction-from-proof
mechanism and classical elementary program transformations.

Limitations and future work. Complex algebraic data must be studied to
see how equalities of objects and functions will behave. For instance, dependent
constructors force to congruences, which are difficult to deal with in Coq, even
with setoids, and we could sometimes be happy with observational equalities.

The transformation of a functional recursive version with memory into an
iterative imperative program is classical and has good solutions in well-defined
cases. However, it should be computer-aided, even automated in a compiler.

Our approach prevents the help of program verification tools based on Hoare
logic, e.g. Why3 [16] or Bedrock [7], which also use Coq. However, the intro-
duction of our orbits in such frameworks must be considered to write predicates
about separation and collision, as in [13, 14].

Finally, as our predecessors, we found the total correctness proof of the SW
algorithm to be hard work. But the memory management is still simple in this
algorithm, since it does not include allocation nor deallocation. In fact, the most
delicate was not to do proofs, but to find how the problem should be posed.

References

1. J.-R. Abrial. Event Based Sequential Program Development: Application to Con-
structing a Pointer Program. In FME, LNCS 2805, Springer, pages 51–74, 2003.

2. Y. Bertot and P. Casteran. Interactive Theorem Proving and Program Development
- Coq’Art: The Calculus of Inductive Constructions. Springer-Verlag, 2004.

3. R. Bornat. Proving Pointer Programs in Hoare Logic. In 5th Conf. on Mathematics
of Program Construction, MPC’00, LNCS 1837, Springer, pages 102–126, 2000.

4. M. Broy and P. Pepper. Combining Algebraic and Algorithmic Reasoning: An
Approach to the Schorr-Waite Algorithm. ACM-TOPLAS, 4(3):362–381, 1982.

5. R. Bubel. The Schorr-Waite Algorithm. In Verification of Object-Oriented Soft-
ware: The {KeY} Approach, volume 4334 of LNCS, pages 569–587. 2007.

6. R.M. Burstall. Some techniques for proving correctness of programs which alters
data structures. Machine Intelligence, 7:23–50, 1972.

7. A. Chlipala. Mostly-automated verification of low-level programs in computational
separation logic. In PLDI, pages 234–245, 2011.

8. W.-P. de Roever. On Backtracking and Greatest Fixpoints. In 4th ICALP, LNCS
57, Springer, pages 412–429, 1977.

9. N. Dershowitz. The Schorr-Waite Marking Algorithm Revisited. Inf. Proc. Lett.,
11(3):141–143, 1980.

10. J.-F. Dufourd. Polyhedra genus theorem and Euler formula: A hypermap-
formalized intuitionistic proof. Theor. Comp. Sci., 403(2-3):133–159, 2008.

11. J.-F. Dufourd. Dérivation de l’algorithme de Schorr-Waite en Coq par une méthode
algébrique. In JFLA’2012, INRIA. http://hal.inria.fr/hal-00665909, 2012.

12. J.-F. Dufourd. Schorr-Waite Coq Development On-line Documentation.
http://dpt-info.u-strasbg.fr/˜jfd/SW-LIB-PUBLI.tar.gz, 2013.

13. J.-F. Dufourd. Formal Study of Functional Orbits in Finite Domains. submitted,
2013, 35 pages.

14. J.-F. Dufourd. Hypermap Specification and Certified Linked Implementation using
Orbits. In ITP’2014, LNCS 8558, Springer, 2014 (to appear).

15. M. Giorgino et al. Verification of the Schorr-Waite algorithm - From trees to
graphs. In 20th LOPSTR’2010, LNCS 5464, Springer, pages 67–83, 2010.

16. J.-C. Filliâtre. Verifying Two Lines of C with Why3. In VSTTE, pages 83–97,
2012.

17. S.L. Gerhardt. A derivation-oriented proof of the Schorr-Waite algorithm. In
Program Construction, LNCS 69, Springer, pages 472–492, 1979.

18. G. Gonthier. Formal Proof - The Four-Color Theorem. Notices of the AMS,
55(11):1382–1393, 2008.

19. D. Gries. The Schorr-Waite Graph Marking Algorithm. Acta Informatica, 11:223–
232, 1979.

20. M. Griffiths. Development of the Schorr-Waite algorithm. In Program Construc-
tion, LNCS 69, Springer, pages 464–471, 1979.

21. B. Hackett and R. Rugina. Region-Based Shape Analysis with Tracked Locations.
In 32th ACM POPL’05, pages 310–323, 2005.

22. T. Hubert and C. Marché. A case study of C source code verification; the Schorr-
Waite algorithm. In 3rd IEEE SEFM’05, pages 190–199, 2005.

23. D.E. Knuth. The Art of Computer Programming, Volume I: Fundamental Algo-
rithms. Add.-Wesley, 1968.

24. K. Rustan M. Leino. Dafny: An automatic program verifier for functional correct-
ness. In LPAR, volume 6355 of LNCS, pages 348–370, 2010.

25. X. Leroy and S. Blazy. Formal Verification of a C-like Memory Model and Its Uses
for Verifying Program Transformations. JAR, 41(1):1–31, 2008.

26. A. Loginov, T. Reps, and M. Sagiv. Automatic Verification of the Deutsch-Schorr-
Waite Tree Traversal Algorithm. In 13th SAS’2006, LNCS 4134, Springer, pages
261–274, 2006.

27. F. Mehta and T. Nipkow. Proving pointer programs in higher-order logic. Info.
and Comp., 199(1-2):200–227, 2005.

28. J.M. Morris. A Proof of the Schorr-Waite Algorithm. In TFPM, volume 91, pages
43–51. NATO, D. Reidel, 1982.

29. V. Preoteasa and R.-J. Back. Invariant diagrams with data refinement. FAC,
24(1):67–95, 2012.

30. J.C. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. In
LICS’02, pages 55–74, 2002.

31. H. Schorr and W.R. Waite. An Efficient Machine-Independent Procedure for
Garbage Collection in Various List Structures. CACM, 10(8):501–506, 1967.

32. N. Suzuki. Automatic Verification of Programs with Complex Data Structures.
PhD Th., Dept. of CS, Stanford, 1976.

33. R.W. Topor. The Correctness of the Schorr-Waite List Marking Algorithm. Acta
Inf., 11:211–221, 1979.

34. M. Ward. Derivation of Data Intensive Algorithms by Formal Transformation.
IEEE-TOSE., 22(9):665–686, 1996.

35. H. Yang. Relational separation logic. TCS, 375(1-3):308–334, 2007.

