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7, rue René Descartes, 67084 Strasbourg, France

pierre.collet@unistra.fr
5 ECAM Strasbourg-Europe 2, Rue de Madrid, Schiltigheim, CS 20013, 67012

Strasbourg Cedex pierre.parrend@ecam-strasbourg.eu

Abstract. Island Model parallel genetic algorithms rely on various mi-
gration models and their associated parameter settings. A fine under-
standing of how the islands interact and exchange informations is an im-
portant issue for the design of efficient algorithms. This article presents
GridVis, an interactive tool for visualising the exchange of individuals
and the propagation of fitness values between islands. We performed sev-
eral experiments on a grid and on a cluster to evaluate GridVis’ ability
to visualise the activity of each machine and the communication flow
between machines. Experiments have been made on the optimisation of
a Weierstrass function using the EASEA language, with two schemes: a
scheme based on uniform islands and another based on specialised islands
(Exploitation, Exploration and Storage Islands). 6

Keywords: Parallel evolutionary algorithms, Island model, Visualisa-
tion, EASEA, grid model

1 Introduction

Island Models are a popular way to parallelise Evolutionary Algorithms: The
classical evolutionary model of a single population that performs a community
search on an unknown search space is replaced by a set of subpopulations, living
their own life in parallel on different machines. This scheme is another way to
control the balance between diversity preservation and focus of search:

6 This work has been funded by the French National Agency for research (ANR),
under the grant ANR-11-EMMA-0017, EASEA-Cloud Emergence project 2011,
http://www.agence-nationale-recherche.fr/.



– It has been proved that having multiple subpopulations helps to preserve
genetic diversity, since each island can potentially follow a different search
trajectory through the search space[1].

– Global search ability is maintained by periodically exchanging individuals
between machines in a process called migration.

Migration is thus an important component of islands models, which is controlled
by parameters, such as migration interval to set the number of generations be-
tween two migrations, and migration size to define the number of migrating
individuals. Due to these additional parameters, it is obvious that a careful
parameter setting is a condition to get efficient island models schemes. Theoret-
ical and experimental studies may help to find typical settings, however ad hoc
tuning remains the favourite method for addressing most of the real life opti-
misation problems. Visualisation of algorithmic behaviour is the approach that
becomes more and more popular for this purpose, as soon as it is able to provide
infomation in a condensed, visual, and easily interpretable way [2,3,4]. The vi-
sualisation of evolutionary algorithms is now drawing more and more attention
in the community (see for instance the VizGec Workshop series at GECCO con-
ference7), and specialised visualisation tools are distributed for various purpose
(see Section 2).

In this paper, we present a visualisation tool specifically developed for island-
based evolutionary algorithms, called GridVis. Thanks to the EASEA language,
communications between machines are collected during execution into log files
local to each machine, then grouped, and visualised after execution as a heatmap
matrix. Various tools allow examining data at different scales with respect to
groups of machines, time or fitness of individual exchanged. Detailed views of
the activity of each machine (sending or receiving) are also available.

The remainder of this paper is organised as follows. Section 2 gives an
overview of visualisation challenges for evolutionary algorithms, with a focus
on what is specific to parallel evolutionary algorithms. Section 2 also presents
the EASEA language and its parallel implementation based on an Island Model.
GridVis is presented in Section 3, followed by an experimental analysis in Section
4. Results of our experiments are discussed in Section 4.2. Section 5 concludes
our work and discusses future research directions.

2 Background

Visualising evolutionary algorithms (EA) is complex, since many different
scales and many different objects need to be visualised. Existing tools fall into
two major groups: a) off-line tools or post-mortem analysis, which try to give an
image as precise as possible of all the phenomena which occured during one or
several runs [5,6,7,8,9,10,8], and b) on-line tools, which are usually less complex
as they monitor what is currently happening during a run [11,12,13,14,15]. The
following issues are desirable objectives for EA visualisation [7,16,17,18], they
consider different levels:
7 http://www.vizgec.ex.ac.uk



– Individual level: How to visualise a solution to the problem: e.g. in the do-
main of generic simulations, both genome and phenotype? How to deal with
problem dependent data?

– Population level: How to display statistics, convergence, loss of diversity, and
lineage of a good solution?

– Process level: How to highlight the effects of genetic operators and other
parameter settings?

– Output: How to visualise the result, particularly in non-standard EAs like
multi-objective or cooperative-coevolution EAs?

Visualising parallel and multi-population EAs is a topic which is explored
only to a limited extend in the literature so far. For instance, Pohlheim [4]
succinctely presents some tools to visualise sub populations and migration effects
as 2D coloured plot diagrams.

Stakes in visualising generic parallel processes are depicted in particular in
[19,20,21]. [20] underlines the importance of monitoring asynchronous, distributed
algorithms on multiple processors for detecting inconsistencies in the algorithms,
to get performance parameters and to develop a conceptual understanding of the
algorithm’s behaviour. Morrow and Gosh also highlight the computational cost
of such a visualisation system if used on-line. Brown et al. [21] report on dynamic
visualisations of parallel algorithms for a specific architecture (torus computers),
based on a language for encoding optimisation algorithms.

This topic is tightly bound with a broader related research topic: program
visualisation. [22], for instance, reports a survey (until 1993) and proposed a
taxonomy of program visualisation tools (visualisations for performance tuning,
debugging, teaching or understanding the behaviour of programs). A more re-
cent survey of 18 different algorithm visualisation systems [23] focusses on their
use in education. It seems clear that the use of a description language makes
visualisations less dependent from architecture. GridVis has been developed in
a similar spirit, based on the EASEA language described hereafter.

EASEA (for EAsy Specification of Evolutionary Algorithms) [24,25] was
initially designed to assist users in producing an evolutionary algorithm from a
given problem description. It is based on a C-like language that contains code
for the genetic operators (crossover, mutation, initialisation and evaluation) and
the genome structure. These functions are written in a dedicated description file,
the .ez file. Out of them, EASEA generates a complete evolutionary algorithm
with potential parallelisation of evaluation over GPGPUs[26], or over a cluster
of heterogeneous machines, in the case of an island model. The generated source
file for the evolutionary algorithm is user-readable. It can be used as-is, or as a
primer, to be manually extended by an expert programmer.

The island model is an efficient and simple way to parallelise evolutionary
algorithms [27], because it often results in important speedup. In a cluster of
computers, every node, which can be seen as an island, runs a complete evolu-
tionary algorithm, which can be seen as an island. A migration mechanism allows
periodically exporting some individuals to the other nodes. EASEA implements
islands using



– exchanges between nodes limited by the migration interval, i.e. the migration
of one individual every n generations , and the migration size, the number
of individuals that migrate. This protocol sets up a very lightweight asyn-
chronous communication.

– a loosely connected model that is based on UDP, which allows parallelising
over neighbour or distant machines (cluster or grid computing).

Extensions of EASEA to grid and cloud computing are currently under devel-
opment through the EASEA-Cloud project8.

3 GridVis

Fig. 1. GridVis Interface visualisation of a grid with 20 machines, using a matrix
representation (a). User control is provided by (b) buttons to change the matrix row
and column order, and (c,d,e) the shown time interval.

GridVis has been developed in Java, to monitor how the islands communi-
cate; Which machines exchange individuals? When and how much individuals
are exchanged? How fit are they? Which machines are the central ones? Are there
clusters of exchange? We model the computer cluster that is running the island
model, as dynamic network with weighted edges (number and fitness of individu-
als) and use an adjacency matrix for visualization (Figure 1(a)). Each computer

8 ANR-11-EMMA-0017, Emergence project 2011, http://www.agence-nationale-
recherche.fr/



in the cluster appears twice in the matrix, once as row and once as column.
Cells in the matrix show information about the exchange between computers
during evolution, for example, the amount of individuals exchanged (from row
to column). Similar to heat maps [28], exchange is mapped to darkness. Darker
cells indicate a higher exchange rate.

While matrix visualizations have recently been applied to dynamic networks
[29,30], heatmap visualisations have been used for many different purposes, for
evolutionary algorithms visualisation, they have been used for instance for facili-
tating the exploration and interpretation of Pareto fronts [31]. This visualization
scheme has been chosen for the following reasons:

– Visual simplicity : Brigthness and colour perception is pre-attentive, and clus-
ters of islands with high exchange rates appear close, due to row and column
reordering optimisation.

– Scalability : Matrices are well suited for visualising large networks (typical
clusters contain about 100 machines) and with many relations between ma-
chines (individuals are potentially exchanged between all machines) [32].

Figure 1 shows the GridVis display for a grid of 20 and 100 machines (islands),
respectively. The number of individuals sent during a time interval [tMIN , tMAX ]
from machine i to machine j is given by the grey level of cell (i, j) (white cor-
responds to no exchange, black is the highest count). Machines are identified by
their names on row and columns. The time interval [tMIN , tMAX ], which deter-
mines the shown exchanges in the matrix, can be dynamically modified using
sliders: independently for tMIN (Figure 1(b)) and tMAX (Figure 1(c,d)) and as
a sliding interval using the bottom bar (Figure 1(e)). Numerical values (in ms
for the time) are given in the white frame above the heat map. The following
options can be activated on demand, using the buttons in Figure 1(b):

– Row and column reordering : Rows and columns can be ordered (i) lexically,
(ii) by time, or (iii) by similarity of activity. Lexical reordering consists in
ordering according to line and column labels. Figure 3(a) illustrates a lexical
reordering. The clusters (dark areas in the matrix), which appear using the
lexical ordering, indicate that the algorithm choses machines for exchanging
individuals, based on the machine’s name; nodes of the first cluster had
very different names from those of the second. Temporal reordering sorts
the machines according to when the first individual was sent (Figure 3(b)).
Similarity ordering tries to place machines (rows and columns) with similar
exchange behaviour, close together in order to make sub-clusters of machines
visually appearing as dark areas in the matrix. Our ordering optimisation
is done using a Traveling Salesman problem (TSP) resolver that takes the
number of exchanged individuals as similarity.

– Zoom: Individual machines can be selected to get a focussed view, which
shows the selected machines only, while using the entire space in the matrix.

– Grey level rescaling: each cell has a grey value computed by interpolation
between 0 and the maximal number of individuals exchanged in the current



(a) Lexical Reordering (b) Temporal Reordering

Fig. 2. Examples for row and column reordering strategies in GridVis. (a) Lexical
reordering: Here, individuals are almost exclusively exchanged between machines of
similar names. (b) Temporal Reordering: Here, after a period of exchange between
a group of machines (upper-left grey block), some machines worked alone at different
times (cells appearing as vertical bars). This effect is due to the grid middelware (Glite)
for which the choice of number of islands is controlled but not their synchronisation.
Later .. explain what

time interval. The grey values are dynamically rescaled when the time inter-
val is changed. The “global view” button cancels this rescaling so that grey
levels correspond to the absolute global count of each cell.

– Colour representation: The cell colour intensity still represents the number
of individuals exchanged, while a colour scale from blue via purple and beige
to orange (time coloring) represents the time at which the first individual
has been exchanged (tMIN is blue and tMAX is orange) (Figure 6(a)). Alter-
nately, the fitness of the exchanged individuals can be shown as value ranging
from yellow (low fitness) via orange to red (high fitness) (value encoding).
For each machine we indicate the average best fitness in the considered time
interval on the matrix diagonal using that same colour encoding (Figure
6(b)).

Detailed views on the exchange between each pair of machines are available
by clicking on the corresponding cell in the matrix. A bar chart as shown in
Figure 4(a), indicates when individuals have been exchanged in the considered
time interval (bars) and how fit they have been (colour and length of bars,
encoded redundantly). For example, machine j in Figure 4(c) received during
three periods, separated by interuptions. At the beginning of each period, many
individuals with high fitness have been exchanged (red bars).check correct inter-
pretation and add what that tells about the algorithm.



(a) From i to j (b) Sent by i (c) Received by j

Fig. 3. Detailed views visualizing individuals exchanged between two machines, i and
j, over time (horizontal bar). Each vertical bar represents an individual, its position
on the black horizontal line corresponds to when he was exchanged, received or sent,
between tMIN and tMAX . The colours and widths of the bars corresponds to fitness
value (long and red is high, short and green is low).

Likewise, clicking a machine’s label in the matrix columns, shows the same
chart indicating when and how much individuals the machine received from
the grid (Figure 4(c)). Clicking a machine’s name on a row shows what it sent
(Figure 4(b)).

4 Experimental analysis

4.1 Setup

Experiments were run using [33]. The test case aims at minimising a Weierstras
test function with 10 variables. GridVis has been used to analyse two sets of
experiments:

1. EASEA-Grid experiments, performed on the Complex Systems Virtual Or-
ganization of the European Grid Infrastructure (EGI). Experiments have
been performed with 20 and 100 islands. Parameters are given in Table 1.

2. EASEA-Cluster experiments, performed on a 24-core machine. In this exper-
iment 15 specialized islands (Exploitation, Exploration and Storage Islands)
have been used, according to [24]. Table 2 displays the parameters of each
type of island.

For each island connection events have been logged (timestamp, source, des-
tination, individual to be transmitted and its fitness) for each sent/received in-
dividual throughout the execution. At the end of each experiment, log-files were
collected and grouped in a single file to be displayed by GridVis.

4.2 Results

The EASEA-Grid experiments have been used to generate Figures 1 to 4, where
de-synchronisation effects have been made evidentExplain how you read this from
the pictures. I have no idea. You may also say that this was explored interactively,
since it’s too complex to be shown in an individual image. Yet, the purpose of



Parameter 20-Islands 100-Islands

Nb of generations 1000 500
Population size 2048 512
Crossover probability 0.8 0.8
Mutation probability 0.3 0.3
Surviving parents 100% 100%
Surviving offspring 100% 100%
Elitism Strong Strong
Elite 1 1

Table 1. Parameters for EASEA-Grid

Island type
Parameter Exploring Exploiting Storing

Nb of islands 10 4 1
Nb of generations 70 70 70
Population size 40 40 40
Mutation probability 0.8 0.7 0.3
Crossover probability 0.8 0.7 0.3
Surviving parents 100% 100% 100%
Surviving offspring 100% 100% 100%
Elitism Weak Strong Strong
Elite 0 1 1

Table 2. Parameters for EASEA-Cluster

the first experiment is not clear at this point. You switch to the second one too
quickly . The second set of experiments is analysed below.

A first global view has been generated for EASEA-cluster on Figure 5. Ma-
chines 2930 to 2939 are exploring, machines 2940 to 2943 are exploiting, and a
single storing machine is used (number 2944). A temporal reordering shows the
three clusters (Figure 6(a)), and colour time and colour fitness views (Figures
6(a) and 6(b)) make the different roles of machines types clear.

The following exchange rules have been used (a) Exploring machines send
their individuals to every machine except the storing machine. (b) Exploiting
machines send their individuals to every machine except the exploring machines.
(c) The storing machine receives individuals but does not send any individuals.

Figure 6(a) shows a large cluster of machines (the 10 exploring machines),
related by blue cells. They communicate efficiently. The smaller cluster of ex-
ploiting machines is in brown, which makes evident that exploiting machines
have been started after exploring machines. Figure 6(b) then shows that higher
fitness individuals are exchanged in the small cluster of exploiting machines
(darker cells), which is coherent with the respective role of exploring and ex-
ploiting machines.

Now, let us examine the content of exchanges: as a machine always sends
its best individual, the fitness of this individual is an instantaneous image of
the state of the corresponding island. Exploring machines decrease their fitness



Fig. 4. EASEA-cluster experiment : global view for the 15 machines.

(a) Colour indicating time of interaction
(from purple to orange).

(b) Colour indicating fitness (from yel-
low to red)

Fig. 5. EASEA-cluster experiment results. Rows and columns are ordered according
to time.

(a) Exploring Sent (b) Exploiting Sent (c) Exploring Received

Fig. 6. EASEA-cluster experiments: Individuals sent by an exploiting machine (a),
sent (b) and received (c) by an exploring machine.



quickly at the beginning of the evolution and then stagnate (Figure 7(a)), while
exploiting machines improve their solutions later (figures 7(b) and 7(c)). This
fact can be verified on a view visualizing the end of the run (Figure 8): indi-
viduals that were sent by exploring machines are coloured red (indicating low
performance) while better individuals are manipulated by the exploitation clus-
ter. The role of the storing is to collect best results, it thus only receives dark
yellow coloured individuals.

Fig. 7. EASEA-cluster experiments: Fitness information about the exchanges, zoom.
Yellow areas correspond to better fitness (minisation aim).

5 Conclusions and future works

GridVis has proved to be a useful tool to understand the exchange of indivisuals
in a grid or on a cluster of machines, runnig an island-based model. The activity
of the machine is monitored and the time and quality of the exchanges are easily
visualized. The kind of representation that GridVis offers helps the user with
characterising a good launch on the grid, thus facilitates the parameters tuning
task.

Future work will consider the development of GridVis for dynamic visusalisa-
tion, allowing on-line monitoring and parameter adjustments during execution.
The integration of GridVis into a development framework based on EASEA for
intensive computation purpose will also be considered (within the EASEA-Cloud
Emergence project).
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