
Hypermap Specification and Certified Linked
Implementation using Orbits

Jean-François Dufourd ?

ICUBE, Université de Strasbourg et CNRS,
Pôle API, Boulevard S. Brant, BP 10413, 67412 Illkirch, France - jfd@unistra.fr

Abstract. We propose a revised constructive specification and a cer-
tified hierarchized linked implementation of combinatorial hypermaps
using a general notion of orbit. Combinatorial hypermaps help to prove
theorems in algebraic topology and to develop algorithms in computa-
tional geometry. Orbits unify the presentation at conceptual and concrete
levels and reduce the proof effort. All the development is formalized and
verified in the Coq proof assistant. The implementation is easily proved
observationally equivalent to the specification and translated in C lan-
guage. Our method is transferable to a great class of algebraic specifica-
tions implemented into complex data structures with hierarchized linear,
circular or symmetric linked lists, and pointer arrays.

1 Introduction

We propose a revised constructive specification and a certified hierarchized linked
implementation of 2-dimensional combinatorial hypermaps using a general no-
tion of orbit. Combinatorial hypermaps [8] are used to algebraically describe
meshed topologies at any dimension. They have been formalized to interactively
prove great mathematical results, e.g. the famous Four-Colour theorem [20] or
the discrete Jordan curve theorem [10], with the help of a proof assistant. They
are also at the root of the certification of functional algorithms in computational
geometry, e.g. Delaunay triangulation [14]. Once implemented, hypermaps (or
derivatives) are a basic data structure in geometric libraries, e.g. Topofil [2] or
CGAL [27]. Orbits, whose formal study is presented in [12], allow us to deal with
trajectories, at conceptual and concrete levels. A precise correspondence between
hypermaps and their linked implementation remained a challenge which we have
decided to address. The novalties of this work are:
- An entire development formalized and verified in the Coq proof assistant [1].
Nothing is added to its higher-order calculus, except the axiom of extensionality
and another one for address generation of new allocated memory cells. The first
says that two functions are equal if they are equal at any point, and the second
that an address generated for a block allocation is necessarily fresh and non-null;
- An extensive use of orbits, which nicely unifies and simplifies the presentation
of specifications and linked implementations and reduces the proof effort;

? This work was supported in part by the French ANR project GALAPAGOS.

- An intricate pointer implementation in a general simple memory model, and
concrete operations described in a functional form which is easy to translate in
a ”true” programming language, e.g. in C;
- A proof of observational equivalence between specification and pointer imple-
mentation thank to morphisms.

The underlying method is transferable to a great class of complex data struc-
tures with hierarchized linear, circular or symmetric lists, and pointer arrays.
That is greatly due to the unification provided by orbits. In Sect. 2, we recall
the orbit formalization. In Sect. 3 and 4, we present and specify the hypermaps.
In Sect. 5, we formalize the general memory model, then we describe in Sect.
6 the linked implementation. In Sect. 7, we prove the observational equivalence
between specification and implementation. We discuss related work in Sect. 8
and conclude in Sect. 9. The whole formalization process is described but the
proof scripts are out of the scope of this article. The Coq development, including
ref. [12] and orbit library files, may be downloaded [11].

2 Orbits for functions in finite domains

General definitions and properties [12] In Coq, all objects are strongly
typed, Prop is the type of propositions, and Type can be viewed as the “type of
types” [1]. We work in a context composed of: X:Type, any type whose built-in
equality = is equipped with eqd X, a decision function, exc X:X, an element cho-
sen as exception, f:X -> X, any total function on X, and D, a finite (sub)domain
of X never containing exc X. For technical reasons, D is described as a finite list
of type list X with no repetitive element. We write In z l when z occurs in
the list l, nil for the empty list, and ~ for not. For any z:X and k >= 0, we
consider zk := Iter f k z, the k-th iterate of z by f (with z0 := z). Since D

is finite, during the iteration process calculating zk, a time necessarily comes
where zk goes outside D or encounters an iterate already met [12].

Definition 1. (Orbital sequence, length, orbit, limit, top)
(i) The orbital sequence of z by f at the order k >= 0, denoted by orbs k z, is
the list containing z(k-1), ..., z1, z0, written from first to last elements.
(ii) The length of z’s orbit by f w.r.t D, denoted by lorb z, is the least integer
p such that ~ In zp D or In zp (orbs p z).
(iii) The orbit of z by f w.r.t. D is orbs (lorb z) z, in short orb z.
(iv) The limit of z by f w.r.t. D, is zp − or z(lorb z) −, in short lim z.
(v) When In z D, the top of z by f w.r.t. D is z(lorb z - 1), in short top z.

So, an orbit is a bounded list without repetition, possibly empty, which can be
viewed as a finite set when it is more convenient. Necessarily the shape of z’s orbit
(Fig. 1(Left)) is: (i) empty when ~ In z D; (ii) a line when ~ In (lim z) D,
what is denoted by the predicate inv_line z; (iii) a crosier when In (lim z)

(orb z) what is denoted by inv_crosier z; (iv) a circuit when lim z = z,

what is denoted by inv_circ z. An empty orbit is a line and a circuit as well,
and a circuit is a crosier, since lim z = z entails In (lim z) (orb z). The

z z= p

z z= p

z p

z p

ComponentsShapes

z
p−1

z

top

circuit

lim

z
p−1

limtop

top

lim

D

z

z

1

1

z

z

p−1

z

z

z
z

p

p

p−1

p−1z

z

tree
circuit

trees

D
empty shape

line

crosier

Fig. 1. Orbit Shapes (for 4 positions of z) / Components (for 2 positions of z).

existence of an orbital path from z to t, i.e. the fact that t is in z’s orbit, is
written expo z t, where expo is a binary reflexive transitive relation, which is
symmetric only if z’s shape is a circuit. A lot of lemmas express the variation of
lorb, orb and lim along z’s orbit, depending on its shape [11]. In fact, (D, f)

forms a functional graph whose connected components are trees or circuits with
grafted trees in D. Fig. 1(Right) shows components for two positions of z in D.

When the orbit of z is a non-empty circuit or z has exactly one f-predecessor
in D, the definition of an inverse for f, denoted by f 1 z, is immediate (see [11]).
That is the case for any z having an f-predecessor in D when f is partially
injective w.r.t. D in the following sense (Here, -> denotes the implication):

forall z t, In z D -> In t D -> f z <> exc X -> f z = f t -> z = t

That is the usual injection characterization for f, but only with f z <> exc X to
fully capture the features of linked lists in memories. In this case, the orbit shapes
are only lines and circuits, and the connected components only (linear) branches
and circuits. The branch of z is obtained by prolongation of z’s orbit with the
f-ancestors of z in D (Fig. 2(a)). When f is a partial injection, its inverse f 1

enjoys expected properties, e.g. f 1 (f z) = f (f 1 z) = z and orbit shape
similarities with f [11]. Fig. 2(b) shows the inversion of a branch connected
component (Fig. 2(a)) of z. The previous notions are given in a context, in fact
a Coq section, where X, f and D are variables. Outside the section, each notion is
parameterized by X, f and D. For instance, lorb z becomes lorb X f D z and
is usable for any type, function and domain. This is necessary when f or D are
changing as in what follows.

So, when f is partially injective, if we want to work only with circuits, we
can close all the “open orbits”, in fact the branches. This operation (Fig. 2(c)),
which modifies f but not D, uses top (Sect. 2) and bot (Fig. 2(a,b)):

1f_

1f_

1f_

1f_

1f_

1f_

D

z

zp−1

= zp

top

bot

circuit

z

f

z

D D
(a) (b)

f

lim = exc X

f

f

f

f

top

line

(c)

lim

top

bot

line

bot

lim

branch

branch

Fig. 2. (a) Branch containing z / (b) Inversion / (c) Closure.

Definition bot f D z := top (f_1 X f D) D z.
Definition Cl f D z := if In_dec X z D then if In_dec X (f z) D then f z else bot f D z else z.

In Cl f D, all the orbits are circuits and the reachability expo is symmetrically
obtained from this for f. Now, we outline orbit updating operations.

•Addition/deletion An addition inserts a new element a in D, while the (total)
function f:X -> X remains the same. We require that ~ In a D, we pose Da :=

a :: D and a1 := f a. Regarding the orbit variation, for any z:X, two cases
arise: (i) When lim D f z <> a, the orbit of z is entirely preserved; (ii) Oth-
erwise, great changes can occur (See [12]). But, if we suppose that ~ In a1 D

(Fig. 3(Left)), which corresponds to most practical cases, z’s new orbit is the
previous one completed by a only. The ”inverse” operation is the deletion of an

z

line

z

1

a = z
j

D
D_a

a1

z

z1

p−1

z

line

a1 = pza

D

Da

Fig. 3. Addition (Left)/Deletion (Right) effect on an orbit.

element a from D. Regarding the orbit variation for any z:X, two cases arise: (i)
When In a (orb D f z), z’s orbit is cut into a line with limit a (Fig. 3(Right),
where D_a:= remove D a); (ii) Otherwise it is entirely preserved.

• Mutation A mutation modifies the image by f of an element u, i.e. f u,

into an element, named u1, while all the other elements, and D, are unchanged.
The new function, named Mu f u u1, is defined by:

Definition Mu(f:X->X)(u u1:X)(z:X):X := if eqd X u z then u1 else f z.

If u is not in D nothing important occurs. If u is in D, two cases arise to determine
the new orbits of u1 and u (Fig. 4): (i) When ~ In u (orb f D u1), the orbit
of u1 does not change and the new orbit of u is this of u1 plus u itself (Fig.
4(Case A)); (ii) Otherwise, the mutation closes a new circuit which, say, starts
from u1, goes to u by the old path, then goes back to u1 in one step (Fig. 4(Case
B)). Then, the new orbit of any z:X can be obtained similarly. Different cases
arise depending on the respective positions of z, u1 and u (See [12]).

u

u1

u

u1

D

Case A Case B

circuit

line

Mutation

u

circuit

u

u1

line

Case A Case B

line

u1
D

f u f u

f uf u

Fig. 4. Mutation: Cases A and B.

• Transposition A transposition consists in exchanging the images by f of two
elements which must belong to circuits. In fact, just one element, u, and its new
successor, u1, are provided in the transposition, whose definition is:

Definition Tu(f:X->X)(D: list X)(u u1:X)(z:X):X :=
if eqd X u z then u1 else if eqd X (f_1 X f D u1) z then f u else f z.

The definition also says that the new successor of f_1 X f D u1, i.e. u1’s pre-
decessor, is f u, i.e. the old u’s successor, and that nothing is changed for the
other elements (Fig. 5). In the case where u1 = f u, the transposition has no
effect. This operation is usable if u and u1 are in the same circuit or not (Fig. 5,
Left and Right). Intuitively, in the first case, the unique circuit is split into two
circuits, and, in the second case, the two circuits are merged into a unique one.
That is the intuition, but the formal proof of these facts is far from being easy.
Of course, for any z, it is proved that z’s orbit (and connected components) are
not modified by Tu if it contains neither u nor f_1 X f D u1.

3 Combinatorial hypermaps

Combinatorial hypermaps [8] describe space subdivision topologies at any di-
mension. We focus to the dimension 2, and surface subdivisions, like in [20, 10].

(merge)u1

f u

−1

u

u1

f u

f u1

u D
D

Transposition

(split)

u1

−1

−1

f u1 f u1 f u1
−1

u1
u

Transposition
f u f u

u
D D

Fig. 5. Split (Left) and merge (Right).

Definition 2. (Hypermap)
A (2-dimensional combinatorial) hypermap, M = (D,α0, α1), is an algebraic
structure where D is a finite set, the elements of which are called dart, and
α0, α1 are permutations on D, being indexed by a dimension, 0 or 1.

Fig. 6(Left) shows a hypermap with D = {1, ..., 16} and α0, α1 given by a
table. It is embedded in the plane, its darts being represented by half-Jordan
arcs (labeled by the darts) which are oriented from a bullet to a small transverse
stroke. It z is a dart, α0 z shares z’s stroke, α1 z shares z’s bullet. A hypermap
describes surface subdivision topologies, the cells of which can be defined by
orbits, where X = dart, the type of the darts, and D ⊂ dart in Def. 1.

Definition 3. (Hypermap orbits)
Let M = (D,α0, α1) be a hypermap and z ∈ D any dart in M . The edge (resp.
vertex, face) of z is the orbit of z by α0 (resp. α1, φ = α−1

1 ◦ α
−1
0) w.r.t. D.

11

13

14

15

10

9

16

12

1
2

3

4

5

6

7
8

1 2 4 5 10 11

α1

D

α0 2

14 15 16

1

2

5

1 7

7

5

6

8 4

10

 166 11

9 12

10

14

1312

13 16 15

3

3

3

4

6 7 8

8

9

11

13 12 15 14 9

1
2

3

4

5

6

Right: Coding the left hypermap Left: An example hypermap embedded in the plane

Fig. 6. 2-combinatorial hypermap and partial coding in Coq.

Since α0, α1 and φ are bijections on D, then, for any z ∈ D, the orbits of z by
them w.r.t. D are circuits. It is the same for their inverses − α−1

0 , α−1
1 and φ−1

− which are also defined over all D. So, in this cyclic case, if t is in z’s orbit by
f , t’s orbit and z’s orbit may be identified into a unique circuit, defined modulo
a cyclic permutation. So, the common orbit only counts for 1 in the number of

orbits by f . In fact, these cyclic orbits modulo permutation correspond exactly to
the connected components generated by f in D. Cells and connected components
(w.r.t. {α0, α1}) can be counted to classify hypermaps according to their Euler
characteristic, genus and planarity [9, 12].

4 Hypermap Coq formalization

Preliminaries For simplicity, dart is the Coq library type nat of the natural
numbers. The eq dart dec decision function of dart equality is eq nat dec, the
decision function of nat equality, and the dart exception is nild := 0. Then,
the dimensions are the two constants zero and one of the dim enumerated type,
a simple case of inductive type.

Free maps As in [9, 10, 14], the 2-dimensional combinatorial hypermap specifi-
cation begins with the inductive definition of a type, called fmap, of free maps,
i.e. without any constraint:

Inductive fmap:Type :=
V : fmap | I : fmap->dart->fmap | L : fmap->dim->dart->dart->fmap.

It has three constructors: V, for the empty − or void − free map; I m x, for the
insertion in the free map m of an isolated dart x; and L m k x y, for the linking
at dimension k of the dart x to the dart y: y becomes the k-successor of x, and x

the k-predecessor of y. Any hypermap can be built by using these constructors,
i.e. viewed as a term combining V, I and L. For instance, the six-darts part m2

(Fig. 6(Right), with k-links by L being symbolized by small circle arcs) of the
hypermap of Fig. 6(Left) is built by:

m1 := I (I (I (I (I (I V 1) 2) 3) 4) 5) 6.
m2 := L (L (L (L (L m1 zero 4 2) zero 2 5) one 1 2) one 2 3) one 6 5.

Observers Some observers (or selectors) can be easily defined on fmap. So, the
existence in a free map m of a dart z is a predicate defined by structural induction
on fmap by (True (resp. False) is the predicate always (resp. never) satisfied):

Fixpoint exd(m:fmap)(z:dart){struct m}: Prop :=
match m with V => False | I m0 x => x = z \/ exd m0 z | L m0 _ _ _ => exd m0 z end.

The k-successor, pA m k z, of any dart z in m is similarly defined. It is nild if
m is empty or contains no k-link from z. A similar definition is written for pA 1

m k z, the k-predecessor. To avoid returning nild in case of exception, A and
A 1, closures of pA and pA 1, are defined in a mutual recursive way ([11]). They
exactly simulate the expected behavior of the αk permutations (Def. 2).

Hypermaps To build (well-formed) hypermaps, I and L must be used only
when the following preconditions are satisfied. Then, the invariant inv_hmap m,
inductively defined on m, completely characterizes the hypermaps [11]:

Definition prec_I (m:fmap)(x:dart) := x <> nild /\ ~ exd m x .
Definition prec_L (m:fmap)(k:dim)(x y:dart) :=

exd m x /\ exd m y /\ pA m k x = nild /\ pA_1 m k y = nild /\ A m k x <> y.
Fixpoint inv_hmap(m:fmap):Prop:= match m with

V => True | I m0 x => inv_hmap m0 /\ prec_I m0 x
| L m0 k0 x y => inv_hmap m0 /\ prec_L m0 k0 x y end.

When m is a well-formed hypermap, the last constraint of prec_L, A m k x <> y,
entails that, for any z, the orbit for pA m k and pA 1 m k are never closed, i.e.
are never circuits, and always remain lines (Sect. 2). For instance, our m2 exam-
ple respects these preconditions and satisfies inv_hmap m2, so the circle arcs in
Fig. 6(Right) do not form full circles. This choice is motivated by normal form
considerations allowing inductive proofs of topological results [9, 10].

Hypermap properties When inv_hmap m is satisfied, it is proved that A m

k and A 1 m k are inverse bijective operations. Then, considering the function
m2s m which sends the free map m into its support “set” − or instead finite list,
it is proved that pA m k and A m k are partial injections on m2s m. So, for any
dart z, the orbit of z for pA m k w.r.t. m2s m always is a line (ended by nild). It
is proved that A m k is really the closure of pA m k in the orbit meaning (Sect.
2), so the orbits for A m k and A 1 m k are circular:

Theorem inv_line_pA: forall m k z, inv_hmap m -> inv_line dart (pA m k) (m2s m) z.
Theorem A_eq_Cl: forall m k, inv_hmap m -> A m k = Cl dart (pA m k) (m2s m).
Theorem inv_circ_A: forall m k z, inv_hmap m -> inv_circ dart (A m k) (m2s m) z.
Lemma A_1_eq_f_1: forall m k z,

inv_hmap m -> exd m z -> A_1 m k z = f_1 dart (A m k) (m2s m) z.

x1

x

y

y_1

Split m one x y m

x

x1

y

y_1

y1

y x

y2
y3

x1

x2

x

x2

x1

Merge m one x y

y3

y2

y1

y

Fig. 7. Split (Left) and Merge (Right) at dimension one.

Then, orbit results on connectivity [11] for A m k, A 1 m k and their composi-
tions apply, allowing recursive definitions of the numbers of edges, vertices, faces.
The number of connected components, w.r.t. {A m zero, A m one}, is defined
similarly. All this leads to an incremental definition of the Euler characteristic,
to the Genus theorem and to full constructive planarity criteria [9, 11].

High-level operations Operations to break a k-link, delete an (isolated) dart,
and shift the hole of a k-orbit, are specified inductively. They preserve the hyper-
map invariant. Finally, Split m k x y splits an orbit for A m k into two parts
and Merge m k x y merges two distinct orbits for A m k (Fig. 7 for k:= one).
For both, the goal is to insert a new k-link from x to y, while restoring the
consistency of the resulting hypermap. The two operations correspond exactly
with an orbit transposition (Sect. 2):

Lemma A_Split_eq_Tu: forall m k x y,
inv_hmap m -> prec_Split m k x y -> A (Split m k x y) k = Tu dart (A m k) (m2s m) x y.

Lemma A_Merge_eq_Tu: forall m k x y,
inv_hmap m -> prec_Merge m k x y -> A (Merge m k x y) k = Tu dart (A m k) (m2s m) x y.

5 General memory model

Goal We want to derive imperative programs using “high-level” C type facil-
ities, i.e. typedef. So, in our memory C manager simulation, we avoid “low-
level” features − bits, bytes, words, registers, blocks, offsets, etc − as in projects
about compilers or distributed systems [21, 6]. In C, an allocation is realized
by malloc(n) where n is the byte-size of the booked area. A C macro, we call
MALLOC(T), hides the size and allows us to allocate an area for any object of
type T and to return a pointer (of type (T *)) on this object:

#define MALLOC(T) ((T *) malloc(sizeof(T)))

Our (simple) memory model simulates it, with natural numbers as potential ad-
dresses and the possibility to always obtain a fresh address to store any object.

Coq formalization In Coq, the address type Addr is nat, with the exception
null equal to 0. In a Coq section, we first declare variables: T:Type, for any type,
and undef, exception of type T. Then we define a memory generic type Mem T, for
data of type T, inductively with two constructors: initm, for the empty memory;
and insm M a c, for the insertion in the memory M at the address a of an object
c:T. It is easy to recursively define valid M a, the predicate which expresses
that a is a valid address (i.e. pointing to a stored object) in M, and dom M, the
validity domain of M, a finite address set − or instead, list. A precondition derives
for insm and an invariant inv_Mem M for each memory M. Finally, the parameter
function adgen returns a fresh address from a memory, since it satisfies the axiom
adgen_axiom, which is the second and last one (after extensionality) of our full
development. This mechanism looks like the axiom of choice introduction which
does not affect Coq’s consistency:

Variables (T:Type) (undef:T).
Inductive Mem: Type:= initm : Mem | insm : Mem -> Addr -> T -> Mem.
Fixpoint valid(M:Mem)(z:Addr): Prop :=

match M with initm => False | insm M0 a c => a = z \/ valid M0 z end.
Definition prec_insm M a := ~valid M a /\ a <> null.
Parameter adgen: Mem -> Addr.
Axiom adgen_axiom: forall(M:Mem), let a := adgen M in ~valid M a /\ a <> null.

Memory operations The allocation of a block for an object of type T (recall
that T is an implicit parameter) is defined by (%type forces Coq to consider * as
the Cartesian type product):

Definition alloc(M:Mem):(Mem * Addr)%type:= let a := adgen M in (insm M a undef, a).

It returns a pair composed of a new memory and a fresh address for an allo-
cated block containing undef. It formalizes the behavior of the above MALLOC.
The other operations, which are “standard”, are proved conservative w.r.t. to
inv_Mem: load M z returns the data at the address z if it is valid, undef other-
wise; free M z releases, if necessary, the address z and its corresponding block
in M; and mut M z t changes in M the value at z into t.

6 Hypermap linked implementation

Linked cell memory As usual in geometric libraries, we orient the implemen-
tation toward linked cells. First, at each dart is associated a structure of type
cell, defined thanks to a Coq Record scheme. So, a dart is itself represented
by an address. Then, the type Mem, which was parameterized by T, is instanti-
ated into Memc to contain cell data. In the following, all the generic memory
operations are instantiated like Memc, with names suffixed by “c”:

Record cell:Type:= mkcell { s : dim -> Addr; p : dim -> Addr; next : Addr }.
Definition Memc := Mem cell.

So, s and p are viewed as functions, in fact arrays indexed by dim, to represent
pointers to the successors and predecessors by A, and next is a pointer, intended
for a next cell, used for hypermap full traversals (e.g., see Fig. 8 or 9).

Main linked list A 2-dimensional hypermap is represented by a pair (M, h),
where M is such a memory and h the head pointer of a singly-linked linear list of
cells representing exactly the darts of the hypermap. The corresponding type is
called Rhmap. Then, a lot of functions are defined for this representation. Their
names start with “R”, for “Representation”, and their meaning is immediate:

Definition Rhmap := (Memc * Addr)%type.
Definition Rnext M z := next (loadc M z).
Definition Rorb Rm := let (M, h) := Rm in orb Addr (Rnext M) (domc M) h.
Definition Rlim Rm := let (M, h) := Rm in lim Addr (Rnext M) (domc M) h.
Definition Rexd Rm z := In z (Rorb Rm).
Definition RA M k z := s (loadc M z) k.
Definition RA_1 M k z := p (loadc M z) k.

So, Rnext M z gives the address of z’s successor in the list, Rorb Rm and Rlim

Rm are z’s orbit and limit for Rnext M w.r.t. domc M when Rm = (M, h). Oper-
ations Rexd, RA and RA_1 are intended to be the representations of exd, A and
A_1 of the hypermap specification. However, this will have to be proved.

Invariants and consequences To manage well-defined pointers and lists, our
hypermap representation must be restricted. We have grouped constraints in a
representation invariant, called inv_Rhmap, which is the conjunction of inv_Rhmap1
and inv_Rhmap2 dealing with orbits:

Definition inv_Rhmap1 (Rm:Rhmap) := let (M, h) := Rm in
inv_Memc M /\ (h = null \/ In h (domc M)) /\ lim Addr (Rnext M) (domc M) h = null.

Definition inv_Rhmap2 (Rm:Rhmap) := let (M, h) := Rm in
forall k z, Rexd Rm z ->

inv_circ Addr (RA M k) (Rorb Rm) z /\ RA_1 M k z = f_1 Addr (RA M k) (Rorb Rm) z.
Definition inv_Rhmap (Rm:Rhmap) := inv_Rhmap1 Rm /\ inv_Rhmap2 Rm.

For a hypermap representation Rm = (M,h): (i) inv_Rhmap1 Rm prescribes that
M is a well-formed cell memory, h is null or in M, and the limit of h by Rnext M

w.r.t. the domain of M is null. Therefore, the corresponding orbit, called Rorb

Rm, is a line; (ii) inv_Rhmap2 Rm stipulates that, for all dimension k, and address
z in Rorb Rm, the orbit of z by RA M k w.r.t. Rorb Rm is a circuit, and RA 1 M

k z is the inverse image of z for RA M k.
So, for any address z in Rorb Rm, i.e. of a cell in the main list, we immediately

have that RA and RA_1 are inverse operations and that the orbit of z by RA_1 M k

w.r.t. Rorb Rm is also a circuit. Consequently, for k = zero or one, the fields
(s k) and (p k) are inverse pointers which determine doubly-linked circular
lists, each corresponding to a hypermap edge or vertex, which can be traversed
in forward and backward directions. Moreover, these lists are never empty, and,
for each k and direction, they determine a partition of the main simply-linked list.

User operations Now, a complete kernel of user concrete operations may be
defined, exactly as in geometric libraries, e.g. Topofil [2], preserving inv_Rhmap

and hiding dangerous pointer manipulations. We “program” it by using Coq
functional forms whose translation in C is immediate.

• Firstly, RV returns an empty hypermap representation in any well-formed cell
memory M. So, no address z points in the representation:

Definition RV(M:Memc): Rhmap := (M, null).
Lemma Rexd_RV: forall M z, inv_Memc M -> ~ Rexd (RV M) z.

• Secondly, RI Rm inserts at the head of Rm = (M, h) a new cell whose generated
address is x, initializes it with convenient pointers (ficell x initializes s’s and
p’s pointers with x), and returns the new memory, M2, and head pointer, x. Fig.
8 illustrates RI when Rm is not empty:

Definition RI(Rm:Rhmap):Rhmap :=
let (M, h) := Rm in
let (M1, x) := allocc M in
let M2 := mutc M1 x (modnext (ficell x) h) in (M2, x).

nexts zero s one

p onep zero
hx

nexts zero s one

p onep zero

x x x x null

RI Rm:h

nexts zero s one

p onep zero

null

Rm:

Fig. 8. Operation RI: Inserting a new dart in Rm (Left) giving RI Rm (Right).

Numerous properties are proved by following the state changes simulated by the
variables assignments. Of course, RI does what it should do: adding a new cell
pointed by x, and creating new fixpoints at x for RA and RA_1 at any dimension.
The corresponding orbits of x are loops, while the other orbits are unchanged
(eq Addr dec is the address comparison):

Lemma Rorb_RI: Rorb (RI Rm) = Rorb Rm ++ (x :: nil).
Lemma Rexd_RI: forall z, Rexd (RI Rm) z <-> Rexd Rm z \/ z = adgenc M.
Lemma RA_RI: forall k z, RA (fst (RI Rm)) k z = if eq_Addr_dec x z then x else RA M k z.
Lemma RA_1_RI: forall k z, RA_1 (fst (RI Rm)) k z = if eq_Addr_dec x z then x else RA_1 M k z.

Proofs use in a crucial way properties of orbit operations (Sect. 2): Rnext, RA
and RA 1 can be viewed through additions and mutations in orbits, e.g.:

Lemma Rnext_M2_Mu: Rnext M2 = Mu Addr (Rnext M) z_1 (Rnext M z).
Lemma RA_M2_Mu: forall k, RA M2 k = Mu Addr (RA M k) x x.

• Thirdly, RL m k x y performs a transposition involving the orbits of x and y

at dimension k. It replaces, for function RA Rm k, the successor of x by y, and
the successor of RA_1 m k y by RA m k x, and also modifies the predecessors
consistently. This operation, which is the composition of four memory mutations,
is illustrated in Fig. 9 for k:= one. It is proved that the expected missions of
RL are satisfied, for Rexd, RA m k and RA_1 m k. So, the orbits for RA m k and
RA_1 m k remains circuits, and RL realizes either a merge or a split. The proofs
extensively use relations established with the orbit operations, particularly with
the generic orbit Tu transposition (Sect. 2), e.g., M6 being the final memory state:

Lemma RA_M6_eq_Tu: RA M6 k = Tu Addr (RA M k) (Rorb (M,h)) x y.

next

p onep zero

nexts zero s one

y_k
p zero

s zero

xk

y_k

xk

next

p onep zero

nexts zero s one

x

s zero

p zero

y

x

y

RL Rm k x y:

next

p onep zero
y

nexts zero s one

y_k
p zero

s zero

y_k

y

next

p onep zero
xk

nexts zero s one

s zero

p zero

xk

x

x

Rm:

Fig. 9. Operation RL: Transposing two darts of Rm (Left) giving Rm k x y (Right).

• Fourthly, RD Rm z H achieves a deletion of the pointer x (which must be a
fixpoint for RA and RA 1) and a deallocation of the corresponding cell, if any.
The additional formal parameter H is a proof of inv_Rhmap1 Rm, which is used
to guarantee the termination of x’s searching in Rm. Indeed, in the general case,
one has to find x_1, the predecessor address of x in the linked list, thanks to a
sequential search. It is proved that, after RD, x is always invalid, and Rnext, RA
and RA_1 are updated conveniently. Once again, the proofs [11] rely on properties
of orbit deletion and mutation (Sect. 2).

7 Equivalence hypermap specification / implementation

Abstraction function We want to go from a hypermap representation, Rm, to
its meaning − its semantics − in terms of hypermap specification by an ab-
straction function. From a user’s viewpoint, the construction of Rm is realized
exclusively from a well-formed memory M throughout RV, RI, RL and RD calls,
satisfying the preconditions. That is expressed by a predicate, called CRhmap Rm,
which is inductively defined (for technical reasons of recursion principle genera-
tion) in Type [11]. If Rm satisfies CRhmap Rm, then it is proved to be a consistent
hypermap representation. Then, the abstraction function, called Abs, is recur-
sively defined by a matching on a proof CRm of this predicate, m0 := Abs Rm0

H0 being the result from the previous hypermap, Rm0, in the recursion, if any:

Fixpoint Abs (Rm: Rhmap) (CRm : CRhmap Rm) {struct CRm}: fmap :=
match CRm with

CRV M H0 => V
| CRI Rm0 H0 => let m0 := Abs Rm0 H0 in I m0 (adgenc (fst Rm0))
| CRL Rm0 k x y H0 H1 => let m0 := Abs Rm0 H0 in

if expo_dec Addr (RA (fst Rm0) k) (Rorb Rm0) x y
then if eqd Addr (A m0 k x) y then m0 else Split m0 k x y
else Merge m0 k x y

| CRD Rm0 x Inv H0 H1 => let m0 := Abs Rm0 H0 in D m0 x.
end.

So, we prove that Abs leads to a real abstract hypermap, with an exact corre-
spondence between exd, A and A_1 of Abs Rm CRm and Rexd, RA and RA_1 of Rm.

Representation function Conversely, we go from a hypermap to its represen-
tation in a given memory M. However, the mapping is possible only if the darts
correspond to addresses which would be generated by successive cell allocations
from M. So, the representation function Rep returns from a hypermap a pair (Rm,
Pm), where Rm:Rhmap is a hypermap representation and Pm:Prop is a proposition
saying if the preceding property is satisfied or not:

Fixpoint Rep (M:Memc)(m:fmap): (Rhmap * Prop)%type :=
match m with

V => (RV M, True)
| I m0 x t p => let (Rm0, P0) := Rep M m0 in (RI Rm0 t p, P0 /\ x = adgenc (fst Rm0))
| L m0 k x y => let (Rm0, P0) := Rep M m0 in (RL Rm0 k x y, P0)

end.

Consequently, the representation into Rm succeeds if and only if Pm is satisfied. In
this case, Rm satisfies inv_Rhmap, with an exact correspondence between exd, A
and A_1 of m and Rexd, RA and RA_1 of Rm. These results make Abs and Rep mor-
phisms. So, we have an observational equivalence specification-representation.

8 Related work and discussion

Static proofs of programs They are mostly rooted in Floyd-Hoare logic,
which evaluates predicates over a variable stack and a memory heap through-
out program running paths. To overcome difficulties of conjoint local and global

reasoning, Reynolds’s separation logic [26] considers heap regions − combined
by ∗, a conjunction operator −, to link predicates to regions. In fact, predicates
often refer to underlying abstract data types. Then, the reasoning concerns at
the same time low- and high-level concepts, which is quite difficult to control.
These approaches are rather used to prove isolated already written programs.

Algebraic specification To specify and correctly implement entire libraries,
we prefer starting with a formal specification, then deriving an implementation,
and proving they correspond well. So, like [3, 24, 23, 17, 7], we find it better to
specify with inductive datatype definitions in the spirit of algebraic specifications
[28]. They must be constrained by preconditions inducing datatype invariants.
Of course, definitions and proofs by structural induction must be supplemented
by Nœtherian definitions and reasoning, to deal with termination problems.

Memory and programming models To implement, we focus on C, in which
our geometric programs are mostly written [2]. Here, fine storage considerations
[21, 6] are not necessary: A simple “type-based” memory model is good enough.
Coq helps to simulate C memory management, expressions and commands at
high level, following the “good rules” of structured (sequential) programming.
Moreover, we try to converge to tail-recursive definitions, which are directly
translatable into C loops. Of course, additional variant parameters to deal with
termination, e.g. in RD, must be erased, as in the Coq extraction mechanism [1].

Separation and collision Burstall [4] defines list systems to verify linked list
algorithms. Bornat [3] deals with address sequences like in our orbits. Mehta
and Nipkow propose relational abstractions of linear or circular linked lists with
some separation properties in Hoare logic embedded in Isabelle/HOL [24]. These
questions are systematized in separation logic [26, 25] which is well suited to dis-
tributed or embedded systems [18] and to composite data structures [17]. Enea et
al. propose a separation logic extension for program manipulating “overlaid” and
nested linked lists [16]. They introduce, ∗w, a field separating conjunction oper-
ator to compose structures sharing some objects. Their examples turn around
nested singly-linked lists and list arrays. In fact, our orbit notion seems sufficient
for all singly- or doubly-linked linear or cyclic data structures, at several levels,
and predicates can be expressed by using Coq logic. Separation is expressed by
disjunction of orbits, whereas collision (and aliasing) is described by their coa-
lescence, orbits often playing the role of heaps in separation logic.

Hypermap specification To specify hypermaps [8] in Coq/SSReflect, Gonthier
et al. [20] adopt an observational viewpoint with a definition similar to Def. 2
(Sect. 3). So, they quickly have many properties on permutations. Their final
result, i.e. the proof of the Four-Colour theorem, is resounding [20]. Our ap-
proach is constructive, starting from a free inductive type, which is constrained
into a hypermap type. It complicates the true beginning but favors structural
induction, algorithms and verifications in discrete topology [9, 10, 14].

Dedicated proof systems The Ynot project is entirely based on Coq [15,
22]: Higher-order imperative programs (with pointers) are constructed and veri-
fied in a Coq specific environment based on Hoare Type Theory, separation logic,
monads, tactics and Coq to OCaml extraction. Thanks to special annotations,
proof obligations are largely automated. Our approach is more pragmatic and
uses Coq, and orbits, without new logic features. The proofs are interactive, but
specification and implementation are distinct, their links being morphisms, and
the simulated imperative programs are close to C programs. Many verification
platforms, e.g. Why3 [19] or Frama-C [5], are based on Hoare logic, and federate
solvers, mainly SAT and SMT, often in first-order logic. The Bedrock system by
Chlipala [6] is adapted to implementation, specification and verification of low-
level programs. It uses Hoare logic, separation logic and Coq to reason about
pointers, mostly automatically. However, it cannot tolerate any abstraction be-
yond that of assembly languages (words, registers, branching, etc).

9 Conclusion

We presented a study in Coq for the entire certified development of a hypermap
library. We follow a data refinement by algebraic specifications and reuse at
each stage orbit features [12]. To certify pointer implementations, we use only
Coq on a simple memory model, instead of Hoare logic and separation logic.
The Coq development for this hypermap application − including the memory
model, contains about 9,000 lines (60 definitions, 630 lemmas and theorems) [11].
It imports a Coq generic orbit library [12] reusable to certify implementations
with singly- or doubly-linked lists, alone, intermixed or nested.

In the future, we will generalize orbit results, in extension of [13], to deal
with general trees or graphs. Then, we will try to establish an accurate relation
with separation logic, where orbits could provide the basis of new predicates
on complex structures. The fragment of C which we cover by Coq must be
precised to characterize reachable programs and develop a translator to C. The
use of automatic provers, often jointed in platforms is questionnable. It would
be interesting to carry orbit notions in their specification languages, e.g. ACSL
in Frama-C [5]. At high level, we will investigate 3-dimensional hypermaps to
deal with 3D functional or imperative computational geometry programs, like
the 3D Delaunay triangulation which remains a formidable challenge.

References

1. Y. Bertot and P. Casteran. Interactive Theorem Proving and Program Development
- Coq’Art: The Calculus of Inductive Constructions. Springer-Verlag, 2004.

2. Y. Bertrand, J.-F. Dufourd, J. Françon, and P. Lienhardt. Algebraic Specification
and Development in Geometric Modeling. In 4th Int. Joint Conf. CAAP/FASE:
TAPSOFT, LNCS 668, Springer, pages 75–89, 1993.

3. R. Bornat. Proving Pointer Programs in Hoare Logic. In 5th Conf. on Mathematics
of Program Construction, MPC’00, LNCS 1837, Springer, pages 102–126, 2000.

4. R.M. Burstall. Some Techniques for Proving Correctness of Programs which Alter
Data Structures. Machine Intelligence, 7:23–50, 1972.

5. CEA-LIST and INRIA-Saclay-Proval Team. Frama-C Project. http://frama-
c.com/about.html, 2013.

6. A. Chlipala. Mostly-Automated Verification of Low-level Programs in Computa-
tional Separation Logic. In Int. ACM Conf. PLDI’11, pages 234–245, 2011.

7. C. L. Conway and C. Barrett. Verifying Low-Level Implementations of High-Level
Datatypes. In CAV’10, LNCS 6174, Springer, pages 306–320, 2010.

8. R. Cori. Un code pour les graphes planaires et ses applications. Soc. Math. de
France, Astérisque, 27, 1970.

9. J.-F. Dufourd. Polyhedra genus theorem and Euler formula: A hypermap-
formalized intuitionistic proof. Theor. Comp. Science, 403(2-3):133–159, 2008.

10. J.-F. Dufourd. An Intuitionistic Proof of a Discrete Form of the Jordan Curve
Theorem Formalized in Coq with Combinatorial Hypermaps. J. of Automated
Reasoning, 43(1):19–51, 2009.

11. J.-F. Dufourd. Hmap Specification and Implementation - On-line Coq Develop-
ment. http://dpt-info.u-strasbg.fr/˜jfd/Hmap.tar.gz, 2013.

12. J.-F. Dufourd. Formal Study of Functional Orbits in Finite Domains. submitted
to TCS, 2013, 40 pages.

13. J.-F. Dufourd. Dérivation de l’Algorithme de Schorr-Waite par une Méthode
Algébrique. In JFLA’2012, INRIA, hal-00665909, Carnac, Feb. 2012, 15 pages.

14. J.-F. Dufourd and Y. Bertot. Formal Study of Plane Delaunay Triangulation. In
ITP’10, LNCS 6172, Springer, pages 211–226, 2010.

15. A. Chlipala et al. Effective Interactive Proofs for Higher-Order Imperative pro-
grams. In ICFP’09, pages 79–90, 2009.

16. C. Enea et al. Compositional Invariant Checking for Overlaid and Nested Linked
Lists. In ESOP’13, LNCS 7792, Springer, pages 129–148, 2013.

17. J. Berdine et al. Shape Analysis for Composite Data Structures. In Computer-
Aided Verification, CAV’07, LNCS 4590, Springer, 2007.

18. N. Marti et al. Formal Verification of the Heap Manager of an Operating System
Using Separation Logic. In ICFEM’06, pages 400–419, 2006.

19. J.-C. Filliâtre. Verifying Two Lines of C with Why3: An exercise in program
verification. In VSTTE, pages 83–97, 2012.

20. G. Gonthier. Formal Proof - the Four Color Theorem. Notices of the AMS,
55(11):1382–1393, 2008.

21. X. Leroy and S. Blazy. Formal Verification of a C-like Memory Model and Its Uses
for Verifying Program Transformations. J. of Autom. Reas., 41(1):1–31, 2008.

22. J. Gregory Malecha and Greg Morrisett. Mechanized Verification with sharing. In
ICTAC, pages 245–259, 2010.

23. C. Marché. Towards Modular Algebraic Specifications for Pointer Programs: A
Case Study. In RCP’07, LNCS 4600, Springer, pages 235–258, 2007.

24. F. Mehta and T. Nipkow. Proving pointer programs in higher-order logic. Infor-
mation and Computation, 199(1-2):200–227, 2005.

25. P.W. O’Hearn, H. Yang, and J.C. Reynolds. Separation and information hiding.
ACM TOPLAS, 31(3), 2009.

26. J.C. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. In
LICS’02, pages 55–74, 2002.

27. CGAL Team. Computational Geometry Algorithms Library Project, Chapter 27:
Combinatorial Maps. http://www.cgal.org, 2013.

28. M. Wirsing. Algebraic Specification - In Handbook of TCS, volume B. Elsevier/MIT
Press, 1990.

