Formal specification and proofs for the topology
and classification of combinatorial surfaces

Christophe Dehlinger and Jean-Francois Dufourd

Laboratoire ICUBE, Université de Strasbourg, CNRS,
Péle d’Innovation Technologique, boulevard S. Brant,
BP10413, 67400 Illkirch, France
email: jfd@unistra.fr, christophedehlinger@gmail.com

Abstract

We describe one of the first attempts at using modern specification techniques in
the field of geometric modelling and computational geometry. Using the Coq system,
we developed a formal multi-level specification of combinatorial maps, used to rep-
resent subdivisions of geometric manifolds, and then exploited it to formally prove
fundamental theorems. In particular, we outline here an original and constructive
proof of a combinatorial part of the famous Surface Classification Theorem, based
on a set of so-called “conservative” elementary operations on subdivisions.

Key words: combinatorial surfaces, classification, generalized maps, formal
specification, assisted proof, Coq system

1 Introduction

Thanks to their recent rise in quality, efficiency and user-friendliness, formal
specification and proof tools are starting to be used in all mathematical fields,
including geometric modelling and computational geometry. In this paper, we
explain how we built a specification of the topology of geometric manifolds in
a higher-order logic framework with the Coq theorem proving system, then
use this specification to formally prove a combinatorial part of the famous
and non-trivial Surface Classification Theorem, restricted to compact surfaces
with boundary.

Topology is here described by generalized maps [33] [34], a combinatorial model
of subdivisions of manifolds. We specify gmaps (short for generalized maps),
in the Calculus of Inductive Constructions (CIC) [9] [40], a higher-order logic
that allows manipulation of types and objects as well as propositions and

Preprint submitted to Elsevier Science 6 January 2014

proofs. We then express in this calculus the properties that we wish to show,
and prove them by building corresponding proof terms from the axiom terms,
using the inference rules of the calculus. In practice, all the specification, proof
discovery and proof checking work is done with help of the Coq proof assistant
[9] [1]. Some of the theorems we thus proved are very difficult, which testifies
for the power of these tools.

Our specification features a 3-level hierarchy of increasingly fitting but harder-
to-manipulate types to represent gmaps, a large number of constructions, ex-
ploration and modification operations on gmaps, and over a thousand for-
mally expressed and proved theorems, including in particular a topological
version of a part of the famous Surface Classification Theorem. These theo-
rems were proved using a wide range of techniques, such as structural induction
or Neetherian induction.

The long-term objective of this work is to provide a very solid theoretical
basis for the development of geometric modellers, i.e. programs which allow
to build and manipulate combinatorial surfaces and even combinatorial man-
ifolds of higher dimensions. Specification and proof techniques allow firstly to
check the validity and relevance of models and implementations by proving
theoretical results related to them. This is the case here for the Surface Clas-
sification Theorem. Secondly, they allow to formally check the correctness and
termination of algorithms and operations. In our eyes, these two goals are of
equal importance, and justify the need to develop and improve these already
powerful formal techniques, so that they can be used to tackle difficult prob-
lems of geometric modelling and computational geometry. For instance, these
tools could be very helpful in the study of the definition and manipulation of
discrete surfaces, which are a very important link between computer graphics,
geometric modelling and imaging.

The first part of this research is detailed in [13] and [14], which are mainly
intended to the formal specification and automated proof community. In the
present, paper, we give a complete panorama of our work including the second
part, while being less exhaustive on formal aspects and more focused on geo-
metric modelling features. However, the entire Coq source of the development
can be downloaded [12].

The Surface Classification Theorem is one of the most deep and exciting result
in algebraic topology of dimension 2. In [26], Gallier and Xu offer a substantial
history of the discovery and of the numerous attempts to prove this result.
Indeed, a rigorous proof always needs many definitions and lemmas around
topology, algebra and surfaces. So, the theorem says that, despite the fact
that surfaces appear in many diverse forms, they can be classified, which
means that every (compact) surface is equivalent to exactly one representative
surface, also called a surface in normal form.

Of course, to make this statement rigourous, it is necessary to precise: (i) what
is a surface, (i) what is the equivalence of surfaces, (iii) what are normal forms
of surfaces. This is the subject of entire textbooks [37,23,46,29,26], in which
the Surface Classification Theorem is the major result. However, the basic
mathematical tools, the normal forms of surfaces, and the proof techniques,
can differ significantly. In the following, to address the problem, we will provide
a way which is based on combinatorial tools and formalisms well-adapted to
the help of an up-to-date interactive proof assistant.

After this introduction, we briefly present some related work in Sect. 2. In Sect.
3, we state precisely what we mean by surfaces, emphasizing the link between
surface subdivisions and generalized maps. In Sect. 4, we describe intuitively
and then formally the model of generalized maps, as well as important related
basic notions. In Sect. 5, we introduce the Coq notation to describe the basic
types involved. In Sect. 6, we start focusing on the classification theorem
by listing a set of operations on generalized maps that we call conservative,
and use them to define a notion of topological equivalence. In Sect. 7, we
describe the easier second half, called the trading theorem, of the part of the
classification theorem we deal with. In Sect. 8, we deal with the more complex
(and meaningful) first half, called the normalization theorem, and we conclude
in Sect. 9.

2 Related work

There are several approaches to the representation and building of geometri-
cal objects: using equations, viewing them as Boolean combination of basic
objects, or describing their boundaries. In the early 80s, Requicha [45] de-
signed a framework to compare the different solid representation methods. In
the late 80s, Lienhardt developed a powerful tool for boundary representation,
the generalized maps, or gmaps [33] [34]. This model is an extension of Cori’s
hypermaps [10], which were themselves inspired by Jacques and Tutte’s com-
binatorial maps [30] [47]. The generalized maps have the same modeling power
as other models, for instance the ordered structures of Brisson [4], in the sense
that they can model the mesh topology of any surface, open (i.e. with bound-
aries) or not, orientable or not. Their advantages are a precise mathematical
description in terms of algebraic combinatorial structure, an interesting sav-
ing of concepts making implementations easier, and a great extension power
allowing to describe manifolds of any dimension [34,35].

Despite the efforts to improve them, the topological models used for geometric
modelling, including gmaps, remain quite complicated, often spawning very
complex algorithms. However, quite little work has been done to formally
specify them in order to reduce the odds of implementation faults. Several

specification techniques have been experimented, such as set-based models,
algebraic specifications, term rewriting, functional programming. For refer-
ences, see for instance [18]. Dufourd developed a generic algebraic specification
for subdivisions [16] [17] on which an interactive 3D topology-based modeller
Topofil designed by Bertrand was based [3]. Finally, an attempt of functional
specification and programming in OCaml of classical computational geometry
problems with combinatorial maps is related in [22]. One of the main short-
comings of these specification experiments is their lack of using supports for
formal and computer-verifiable proofs. But even those fall short, as their proof
facilities are outdated. Hence our motivation to work with a state-of-the-art
specification and proof assistant.

Theorem provers have indeed gone a long way. Among the first, one can cite
Automath by de Bruijn, based on a typed lambda-calculus, and Prolog by
Colmerauer and Kowalski, implementing reasoning by resolution in classi-
cal first-order logic. Both date back to the sixties. Unlike these two, mod-
ern provers are based on higher-order logics, allowing quantification over sets,
types and functions. There are currently two classes of proof assistants: theo-
rem provers, that are dedicated to one or several fields and work by running
specialized proof search algorithms against the sought goal, for example PVS,
and tactic provers, generic proof systems that work by refining a goal using
simple commands called tactics, for instance Isabelle. The Coq system [§],
based on the Calculus of Inductive Constructions, is one of the most powerful
of these, and has already been successfully used in many different fields.

Geometry, but not geometric modelling, has always been popular for auto-
mated deduction. One of the very first automatic theorem provers was ded-
icated to plane geometry [27], reasoning with the resolution rule from well-
chosen ad hoc axioms. Heyting’s intuitionistic plane affine geometry axiomatic
system was used by von Plato [48] and Kahn [31] to develop and test in Coq
their own constructive theory of ordered affine geometry. We used Coq to study
Hilbert’s axiomatics in a constructive framework [15]. Besides these “pure” ge-
ometry approaches, algebraic resolution methods were also implemented in an
ad hoc way, most notably in [7]. Pichardie and Bertot formalized in Coq the
development of proved convex hull algorithms from an axiomatic system by
Knuth [32] [41], while Meickle and Fleuriot tackled similar problems in Isabelle
[38].

Combinatorial hypermaps have been formalized in Coq/SSReflect by Gonthier
et al. to prove the very difficult Four Color Theorem [28|. Finally, the only
geometric modelling-related automated deduction experiments with combina-
torial maps that we are aware of is Puitg and Dufourd’s proofs of a planarity
criterion and the Euler-Poincaré formula [42,19] [44], leading to the formal
proof of a discrete Jordan curve theorem in orientable closed surfaces [20].
Very recently, correctness proofs of algorithms in the context of hypermaps

were conducted for convex hull problems [5], and Dufourd and Bertot have
achieved in Coq a proof of total correctness of a Delaunay 2D algorithm [21].

Our original idea to prove the classification theorem was to adapt in a for-
mal context one of the classical proofs. Moreover, following Griffiths [29], we
wanted to avoid classical mathematical treatments with topological spaces,
continuity, homeomorphisms and homology, in favor of a direct proof with
combinatorial arguments using the intuitive notion of generalized map. We
then decided to build a new proof adapting the attractive approach of Grif-
fiths with “paper surfaces” — also called “polyhedral surfaces” or “rubber sheet
surfaces” by Seifert and Threlfall [46] — to the gmap notions. So, we fully use
notions such as panel, panel addition, reasoning by structural and Neetherian
induction as well. However, to use the Coq system, we had to be extremely
rigorous in the capture of these notions, to avoid axioms given by the writ-
ing of “agreements” [29], and to clearly separate what is geometry, topology
and combinatorics. Although we excluded approaches based on word rewriting
which seemed too far from this goal, we were inspired by Fomenko’s work [25],
to define some conservative operations able to prove what is called the trading
theorem and the normalization theorem.

3 Surfaces and subdivisions

As it is the basis of algebraic topology in dimension 2, the approach that we
follow in this section is common to most textbooks on surfaces [37,23,46,29,26|,
but our terminology is mainly borrowed from Griffiths [29]. Classically, a sur-
face (or 2-dimensional manifold) is defined as a Hausdorff space where each
point’s neighborhood is homeomorphic to either R? or the half-space y > 0.
This definition is fine for mathematical study, but not for actual computer use:
it is too abstract to realistically base a modeller on it. This kind of continu-
ous object being too hard to manipulate, surfaces are often modelled instead
by using combinatorial and modular models, which allow easier storing and
handling of surfaces. A very common approach is to subdivide a surface into
simple elementary surfaces and see how these elementary bricks are connected
to one another to form the original surface.

Depending on the model, the elementary surfaces may be triangles, or, in our
case, panels. A panel is a surface that is homeomorphic to a disc, i.e. that is
the image of a disc by a bicontinuous bijection to it. Figure 1 shows a few
panels: (a) a disc, (b) a polygon, (¢) a slit ring, and (d) a cap. Panels have
a single boundary which is a Jordan curve decomposed into a sequence of
Jordan arcs, called edges, bounded by points, called vertices. For us, a surface
is a patchwork of panels sewn along their edges. Some edges may be unsewn,
they correspond to the boundaries of the subdivided surface. Each boundary

L&

(d

Fig. 1. Examples of panels

is a Jordan curve determining a hole in the surface.

Figure 2 shows a few examples of subdivided surfaces. Surface (a) is a triangle,

AO~-°
S,

Fig. 2. Examples of surface subdivisions

made of four panels. It has a single boundary. Surface (b) is a ring, made of a
single panel in which two parts of the boundary are sewn in order to close the
ring. It has two boundaries (the “inside” and “outside” boundaries). Surface
(c) is a Maebius strip, a ring in which the panel is twisted before its ends
are sewn. It has a single boundary. Surface (d) is a torus, made of a single
bent rectangular panel the opposite sides of which are sewn to each other.
It has no boundary. Finally, surface (e) is a torus that has been punctured,
giving it a boundary. This approach allows to model open (i.e. with finitely
many boundaries) or closed (i.e. without boundary) compact surfaces as well
as orientable or non-orientable compact surfaces, like the Mcebius strip or the
Klein bottle.

The theorem of classification deals with the classification of compact surfaces
according to their topology. Two surfaces belong to the same class if they are
homeomorphic, i.e. if there exists a bicontinuous bijection from one onto the
other. In textbooks, the theorem has different equivalent formulations. The
one that we retain here states:

Theorem 1 (i) Any connected compact surface with boundaries belongs to
one class, the members of which are homeomorphic to each other. Each class
is characterized by a triplet of natural numbers (p,q,r) with r < 2.

(ii) Forr < 2, v < 2 and (p,q,r) # (p/,¢,r"), the classes represented by
(p,q,7) and (p',q',r") are distinct.

Of course, other formulations are possible when one retains other normal
forms, i.e. representatives of the classes [37,23,46,29,26]. Moreover, although
the theorem also holds for closed surfaces — and is often first proved for them
—, which are obtained from open surfaces by adding lids on their holes, we
remind the reader that we focus on open surfaces in this paper.

The values of p, ¢ and r are very meaningful regarding the surfaces in the
corresponding class: each surface in class (p, ¢, r) features p punctures (in ad-
dition to the outer boundary), ¢ handles and r twists. Thus, surfaces in Figure
2 belong in order to classes (0,0, 0) for (a), (1,0,0) for (b), (0,0,1) for (¢) and
(0,1,0) for (e). Surface (d) belongs to none as it is a closed surface, and as
such cannot be applied the theorem we consider.

The surfaces from Figure 2 are actually very useful. Generally, in mathematics,
it is often convenient for any classification theorem to exhibit a canonical (or
normal element) for each class, a representative element of this class. For this
theorem, following Griffiths [29], we use only sewn panels to build the normal
surfaces, which we call plans. Thus, the plan for class (p,q,r), denoted P,
is built by:

e starting with a disc (a simple panel with a boundary);

e sewing p rings to its boundary (thus adding p punctures);

e sewing ¢ punctured tori to the outer boundary (the tori are sewn along part
of their puncture, thus adding ¢ handles);

e sewing r Maebius strips to the boundary (thus adding r twists).

Figure 3 shows the normal surface P, ;; for class (1, 1,1), a surface with two

@

a [

Fig. 3. Surface Py 1,1

boundaries (the outer boundary and a puncture), one handle and one twist
(with simplified drawings). Thus, part (i) of the classification theorem states
that any open surface is homeomorphic to a surface like that in Figure 3, with
r<2.

To recover closed surfaces, it is enough to glue lids along the boundaries:

the unique disc is closed into a sphere;

the p rings become p discs;

the ¢ tori become ¢ handles;

if = 1, the unique Mcebius strip becomes one cross-cap (or projective

plane), else (r = 2) the two Meebius strips are glued together into one Klein
bottle.

So, the result complies with the classification theorem for closed surfaces
[37,23,46,26].

4 Generalized maps
4.1 Basic definitions and properties

Generalized maps (gmaps, in short) are a combinatorial model that may be
used to represent the topology of manifolds. Gmaps are most importantly char-
acterized by their dimension, which is also the dimension of the manifolds that
they can represent. Gmaps of dimension —1, or —1-gmaps, represent isolated
vertices, 0-gmaps isolated edges, 1-gmaps simple curves, 2-gmaps surfaces,
3-gmaps volumes, etc.

A gmap is a collection of basic abstract elements called darts, intuitively half-
edges, that are connected by involutions ay, k being a dimension, in order to
form cells. We denote the (infinite) type of darts by dart. While they are a
completely abstract type in our specification, darts are usually implemented
as integers or pointers. Although our Coq specification encompasses all di-
mensions, we focus here on 2-gmaps in order to make definitions simpler. A
common mathematical definition of such an object is the following

Definition 2 A generalized map of dimension 2, or 2-gmap, is a quadruplet
(D, ap, aq, o), where D is a finite subset of dart and where the oy are invo-
lutions on D, such that oy and oy have no fixrpoint and that ag o as is also an
involution.

Thus, with D C dart, D finite and ag, 01,00 : D — D, M = (D, ap, o,)
is a 2-gmap if:

e Yz € D,Vk <2,ai(z)
o Vo € DVk <1,a4(x)
o Vr € D, (OZO @) 042)2("17

)

€,
€,
z.

A dart z is said to be sewn at dimension k, or k-sewn, to dart y if ax(z) = y.
In this case, as the ay are involutive, y is k-sewn to x as well. Dart y is also
said to be the k-neighbor of dart = if ax(x) = y. Each of the oy has a different
purpose: «q is used to make up edges, «y simple curves, and «s surfaces. In
general, for any given k, oy is used to make up cells of dimension k.

The conditions imposed on the «; enforce the consistency and completeness
of cells: involutivity of the «; guarantees that each dart has exactly one k-
neighbor for each k. The lack of fixpoints for oy and «; prevents the presence
of dangling darts. As we will see later, fixpoints of ay are the darts that belong
to a boundary. Finally, forcing agoas to be involutive ensures that whenever a
dart is 2-sewn to another, their respective 0-neighbors are also 2-sewn. Thus,
only whole edges are 2-sewn.

Figure 4 shows the standard representation for darts and sewings (Left),

« o e
o+ " e apx=Yy 1]
X oY ax=y 1 i
X
S ey
y

Fig. 4. Standard graphic representation of
darts, sample 2-gmap

as well as a sample 2-gmap subdividing a prism with a triangular base and
lacking the front face (Right). In this figure, z and y are darts. A dart pictured
without k-neighbor is implicitely k-sewn to itself.

4.2 Cells and invariants

With the above definitions, we can introduce usual notions of topology, most
of them being described as orbits:

Definition 3 Let D be a set and f, fo, ..., fn functions on D. For any x €
D, the orbit of fi, fo,..., fn at x is defined to be the smallest subset of D
containing x and stable by all functions f;. It is denoted < fi, fo, ..., frn > (2).

Let M = (D, g, v, 9) be any 2-gmap. With orbits, connected components
and cells of M are easy to define:

Definition 4 The connected component of M incident to dart = € D is the
2-gmap M' = (D', o, o, o) satisfying:

o D =<, a,ay > (x);
o Vk|0<k<2 «p is the restriction of oy, to D'.

Definition 5 For any x € D and any 1,75,k < 2 pairwise distinct, we call
orbit < oy, a; > (x) the k-cell of M incident to x. A 0-cell is also called a
vertex, a 1-cell an edge and a 2-cell a face. We define the map of k-cells of M
to be the algebraic structure regrouping all the k-cells of M, obtained from M
by ripping all its k-sewings. It is denoted My.

Definition 6 For anyx € D and any k < 2 we call orbit < ag, aq, ..., qp_1 >
(x) the simple k-cell of M incident to x. Like we did for cells, we define the
map of simple k-cells as the algebraic structure regrouping all the simple k-cells
of M. It is denoted My . A simple cell of dimension 0, 1 and 2 is respectively
a single dart, an open edge and a cycle of alternately 0- and 1-sewn darts.

In this definition, M5 is a 2-gmap where every dart is an as-fixpoint, M,
and M; are two 1-gmap (with 2 involutions) when g and ay, which may have
fixpoints, are renumbered conveniently. Actually, My and M} are respectively
a 0-gmap and a 1-gmap. Also note that M, = My . Figure 5 shows an example

obvious embedding for M other embedding for M

Fig. 5. An example of a 2-gmap and its
maps of cells, 2-gmap of boundaries
and standard embedding

2-gmap as well as its maps of cells. In this example, M has two connected
components. The 2-gmap d(M) is the 2-gmap of boundaries of M: its darts

10

are the darts of M that are incident to a boundary, each of them being 1-
sewn in §(M) to its boundary-neighbor in M, the notions of boundary and
boundary neighborhood being defined as:

Definition 7 A dart x € D is said to be incident to a boundary of M if
as(x) = z. A dart incident to a boundary is called external, it is called internal
otherwise.

Definition 8 A gmap without boundary is said to be closed, and open other-
wise. An edge whose darts are sewn to themselves is said to be open (it has
2 darts), and closed otherwise (it has 4 darts). A verter containing a dart
incident to a boundary is said to be open, and closed otherwise.

Definition 9 For any dart z, dart y, = (a0 ay)¥(2) is called the boundary-
neighbor of x if k is the smallest natural number such that yy is incident
to a boundary (i.e. as(yx) = yx) and yp # x. All the external darts have a
boundary-neighbor, what is not necessarily the case for the other darts.

Definition 10 A path is a finite sequence of dimensions. Following a path
no, N, - - ., g from dart x yields dart a,, o -+ 0 ay,y © ayy ().

Now that we have defined darts, vertices, edges, faces and connected compo-
nents of a 2-gmap, we note their respective numbers by d, v, e, f and c.

When the gmap is connected, i.e. ¢ = 1, it represents the topology of a sur-
face subdivision, and, conversely, the topology of any surface subdivision is
represented by a connected gmap. Then, we can compute the Fuler-Poincaré
characteristic x of the underlying surface by the famous formula (slightly gen-
eralized):
X=v+e+ f—d.

Let us go back to the former characteristics, (p, g, 7), in order to better under-
stand them. Fistly, p is about one unity the number of boundaries b. Secondly,
when it is reduced to 0, 1 or 2, r is called the orientability factor of the surface.
Thirdly, in this case, ¢ is another classical topological invariant of the surface
which is called its genus. It can be interpreted either as the number of handles,
sometimes called tunnels, of the surface, or as the greatest number of (closed)
Jordan curves that can be drawn on the surface without disconnecting it. Note
that the tunnels must not be confused with holes or punctures.

These numbers are linked by well-known formulae [33]:
b=p+1,

g=1—(r+b+x)/2.

11

Thus (r+ b+ x) is necessarily even, and, q being a natural number, we always
have:
r+b+x <2

Finally, in [33,34], it is shown how all these surface characteristics can be
computed from a corresponding 2-gmap, which is implemented in Topofil [3].

4.3 Embedding and conservative operations

The complete link between subdivisions like 2-gmaps and actual surfaces is
provided by the notion of embedding, i.e. the projection of topological objects
into a representation space. We are interested here in continuous embeddings,
embeddings that have “good properties” which make them intuitively valid.
For instance, all darts from the same topological vertex must be embedded
into the same geometrical vertex. Similarly, all darts from the same topological
edge must be embedded into the same geometric edge and all darts from the
same topological face must be embedded into the same geometric face. Incident
topological objects must be embedded into incident geometrical objects.

Briant and Singerman [6], and Lienhardt [35], have shown that gmaps (with
all the above constraints) ezactly model all the subdivisions of compact sur-
faces, open or closed, orientable or not. However, as we had decided to focus
on combinatorial aspects, we did not formally specify embeddings, as it would
have required extensive algebra, continuous topology and geometry develop-
ments, probably making the specification at least twice as large. But, forgoing
embeddings has a dramatic consequence. Indeed, the theorem of classification
of surfaces applies to surfaces, i.e. embedded topological objects, while all we
have available is a model of the topology of surfaces. Thus, the theorem cannot
be directly expressed in our specification. The first step in dealing with this
theorem was to find a way to adapt the theorem to the combinatorial topology
world.

Our solution was to introduce what we called conservative operations, simple,
local operations that, when applied to a suitable 2-gmap, are strongly believed
not to alter the set of surfaces that this 2-gmap subdivides. Proving so would
require specifying embeddings. We stress that while conservative operations
were inspired by local surface deformations, they only deal with subdivisions
and not surfaces. These operations are listed in Sect. 6. This allows us to
classify subdivisions: two 2-gmaps are considered topologically equivalent if
one can be obtained from the other by applying conservative operations. Thus,
two 2-gmaps are equivalent only if they subdivide the same surfaces. Then,
we proved the first part of the following full theorem of classification:

Theorem 11 (i) Any open 2-gmap is topologically equivalent to a 2-gmap

12

Ny q.r that subdivides one of the P, , . surfaces, with r < 2.
(i) When r < 2, 7" < 2 and (p,q,7) # (0, ¢',7"), Npgr and Ny g, are not
topologically equivalent.

Thus, we shifted from a classification of surfaces to an analoguous classifi-
cation of subdivisions, for which we proved part (i). In order to get back to
surfaces, we need to make the following fundamental classical hypothesis:

Hypothesis. Two surfaces that are subdivided by the same 2-gmap
are homeomorphic.

Indeed, for any surface S there is (by our definition of surfaces) a 2-
gmap M that subdivides it. According to the theorem, M also subdivides one
of the P,,,. Because of the hypothesis, S is homeomorphic to P, ,,. Thus
any surface S is homeomorphic to one of the P, ., which proves part (i) of
the theorem of classification of surfaces. Were the hypothesis not to hold, we
would be left with a (still interesting) theorem of classification of subdivisions
according to what they can subdivide.

5 Coq specification

Now that we have introduced the mathematical notions that appear in our
work, let us see how they are expressed in Gallina, Coq’s specification language
that allows to write terms of the Calculus of Inductive Constructions® .

5.1 Binary relations

Binary relations are only used to model the oy, but, in order to be as modular
as possible, they are specified separately. Actually, this specification of rela-
tions is an extension of [42| [44]. Tt can only deal with relations on objects of
the same type.

Binary relations may be seen as two-place predicates. Thus, in Gallina, we
specify the type of binary relations on a type as an alias for the type of two-
place predicates on this type, with command Definition.

DEFINITION 1 (BINARY RELATION) : Let E be a set. A binary relation on
FE is a two-place predicate on E, i.e. a function that associates a proposition
to any two elements of E:

1 'We used the Coq version 7, the syntax has evolved in later versions

13

Definition relation : Set — Type
:= AE:Set E — E — Prop

As evidenced by the A, the Gallina syntax is quite close to that of functional
languages such as ML, Caml or Haskell. We have slightly simplified this lan-
guage here by adding usual mathematical symbols in order to make terms
more readable to neophytes.

This command declares symbol relation as an abbreviation for higher-order
lambda-term AE:Set E — E — Prop. The notation x: Tis a type judgement
meaning “term x is of type T 7.

Prop is the builtin type for propositions. Propositions are not booleans;
booleans are a two-value concrete type whose values are often associated to
propositions according to their truth or falsehood. Symbol — is (from an in-
tuitive point of view) overloaded, it represents both the connector to build
function types and logical implication. Builtin type Set is that of concrete
types, the types of objects that we want to build and use, such as numbers,
lists, maps, darts, etc. Builtin Type is the type of Set , of Prop , and of
functions into either of these types.

The definition explicitly states that the type of relatzon is Set — Type,
the type of functions from Set into Type. Thus, an object of type
relation is a function that, when applied to a concrete type E (the type
itself, not an object of this type), yields the type E — E — Prop of two-
place predicate on E .

For instance, nat being the predefined type for natural numbers, relation
nat is a shortcut for the redex AE:Set E — E — Prop nat, which -
reduces to nat — nat — Prop, the type of binary predicates on nat .

Usual properties of relations are also specified with the definition mechanism:

DEFINITION 2 (INJECTIVITY) : Let E be a set and R a relation on E.
R is injective if equality of images by R implies (syntactical) equality of
arguments:
Definition injective : (VE:Set) (relation E) — Prop
:= AE:Set AR: (relation E)
(Vx,x’,y:E) (Rxy) - (Rx’y) — x=x’.

DEFINITION 3 (INVOLUTIVITY) : Let E be a set and R a relation on E. R
is involutive if for any element, an image of an image of this element is the
element itself:
Definition involutive : (VE:Set) (relattion E) — Prop
:= AE:Set MR: (relation E)
(Vx,x’,y:E) Rxy) - (Ryx’) — x=x’.

14

In Coq, the usual ordering on natural numbers is named 1t, its type is nat
— nat — Prop. According to our definitions, the injectivity of 1t should
be represented by term (injective nat 1t). However, notice that nat is
redundant: indeed, the first argument of injective is the type on which its
second argument is a relation. Thus, as 1t is a relation on natural numbers,
the only possible first argument of injective is nat (or any equivalent
type). Coq is able to infer this kind of redundant type arguments if asked to.
With this facility, (injective 1t) becomes a valid term. Be aware that all
our further definitions use this facility.

In the same way, we define functionality (functional), irreflexivity
(irreflexive), the proprety of being the identity (identical), as well as
the composition of two binary relations (composition, of type (VE:Set)
(relation E) — (relation E) — (relation E)), partial surjectivity
(surjective), the property of being a permutation (permutation) on a sub-
set of E, and the property of being an involution (involution).

5.2 Darts

Little is said about darts in our previous sections, except that their type is
dart. Thus, we declare them as an abstract type, in order to remain as
generic as possible.

PARAMETER 1 (DART) : there exists a type of darts called dart:
Parameter dart : Set.

This declaration adds a new object, dart of type Set , into the envi-
ronment. This differs from a Definition command, which simply creates an
abbreviation to an already existing term. This declaration does not say much
about dart. For our proofs, we need to make two assumptions on dart :

e Darts may be compared. More precisely, equality of darts should be decidable,
i.e. given any two darts, we must assume that there is a way to find out
whether they are equal or not. This is not the case for any imaginable set of
darts, for instance if darts were represented by formulae over reals that use
exponents: there is no algorithm that allows to check whether two formulae
correspond to the same one real number.

This assumption is necessary, as the CIC, being a constructive logic, does
not allow reasoning by cases if not provided with a method to determine
the relevant cases. Thus, in order to have special cases in our proofs when
two darts are equal, we must assume that we are able to test their equality.
This is an axiom of our specification:

DEFINITION 2 (DECIDABILITY OF DART EQUALITY) :

Axiom EQ_DART_DEC : (Vx,y:dart) x=yV-x=y

15

o There are always unused darts available. We will regularly need fresh darts in
our algorithms, so we must assume that there is an infinite number of them,
as well as have a way to reference them. To do so, we assume that there
is an injection 4dg (for injective dart generator) from natural numbers
into dart, thus ensuring that there is at least as many darts as there are
naturals:

PARAMETER 3 (DART GENERATOR) :
Parameter idg : nat — dart.
DEFINITION 4 (INJECTIVITY OF idg) :
Axiom IDG_INJ : (Vn,n’:mat) (idg n)=(idg n’) — n=n’

5.3 Sewings

A sewing is a triplet made of a natural number (the dimension of the sewing,
not bounded by 2 in the beginning) and the two darts that are sewn:

DEFINITION 4 (SEWINGS) :
Inductive sw : Set := ¢ : nat — dart — dart — sw.

The type of sewings sw is defined as an inductive type, i.e. the smallest type
that contains all the terms that can be built using only its constructors. Type
sw only has a single constructor, a three-argument function that takes one
nat and two darts to create a sewing. Thus, if for instance s, t and u
are darts, then (¢ 0 s t), (¢ 3 s u), (¢c 2 uu) and (¢ 2 t s) are four
sewings. Constructors are assumed to be distinct and injective, thus those four
sewings are distinct as the arguments of ¢ are distinct (unless s=t=u, in which
case the last two sewings are equal). The fact that a sewing can be built only
using c is exploited by our first lemma:

LEMMA 1 (INVERSION OF SEWINGS) : any sewing is an image of c:
Lemma SW_INV : (Vs:sw)
(dn:nat | (3x,y:dart | s=(c n x y)))

This kind of lemma can be linked to the elementary selectors for a type in
a traditional programming language. They will be used to manipulate sw
while building proofs of propositions related to sewings.

5.4 Free maps

Free maps are the simplest type we use to represent gmaps. A free map is
simply a finite collection of darts and sewings, defined much like an ML list:

16

DEFINITION 5 (FREE MAP) :
Inductive fmap : Set :=
v : fmap
| 1 : dart — fmap — fmap
| 1 : sw — fmap — fmap

This is an inductive type definition, which means that the type of free maps
is the smallest type of terms that can be built with constructors v, i and
1. In other words, a free map is either the empty map v, a pair preceded
by i of a dart and a free map (intuitively the insertion of a dart into a free
map), or a pair preceded by 1 of a sewing and a free map (intuitively the
addition of a sewing into the map). When an inductive type is defined, Coq
automatically generates a structural induction scheme for it. Here, it allows
to prove properties on free maps by showing that they are true for the empty
map v and stable by dart insertion with i and sewing insertion with 1. Most
proofs on fmap use this principle.

We can then define two basic selectors as predicates on fmap, using a similar
inductive construction:

DEFINITION 6 (SUCCESSORS) : Let k be a dimension, x and y two darts
and m a free map. Dart y is a k-successor of x in map (1 (¢ k x y) m);
this property is stable by dart and sewing insertions:
Inductive succ : nat — fmap — dart — dart — Prop
:= SUCC_L_X : (Vk:mat; Vm:fmap; Vx,y:dart)
(succ k (1 (c k x y) m) x y)
| SUCC_T : (Vk:mat; Vm:fmap; Vx,y:dart) (Vd:dart)
(succ k m x y)
— (succ k (1 d m) x y)
| SUCC_L : (Vk:nat; Vm:fmap; Vx,y:dart) (Vs:sw)
(succ k m x y)
— (succ k (1 s m) x y)

The other selector is exd, of type dart — fmap — Prop, which describes
the existence of a dart in a free map. An important variation on succ, the
term of which is too long to print here, is the following:

DEFINITION 7 (ALPHA) : (alpha n x m) is either a k-successor of x, or x
itself if there is none:
Definition alpha : nmat — dart — fmap — dart := ...

Its main purpose is to turn the predicate-based definition of succession into
an easier-to-use functional one. Provided that a free map satisfies all the con-
straints given in the definition of gmaps, alpha has the same properties as
the aj. A number of other things related to free maps are also defined, in-
cluding all the notions given in the previous section (boundaries, cells, paths),

17

but also an observational equality relation. Being defined like lists, free maps
are incidentally ordered. But this order is artificial, as equality between free
maps should be determined only by the darts and sewings in each map, not
the order in which they were added, which is unavoidably taken into account
by the builtin Coq equality, since it is only the syntactical equality between
terms of the same type. Thus we introduce our own equality:

DEFINITION 8 (OBSERVATIONAL EQUALITY ON FREE MAPS) : two free
maps are observationally equal if the behaviour of alpha and exd is the
same on both maps
Definition = : fmap — fmap — Prop :=
Am,m’ : fmap
((Vx:dart) (exd x m) <> (exd x m’))
A ((Vk:nat; Vx:dart)

(alpha k x m)=(alpha k x m’))

The definition of gmaps using free maps is heavily underconstrained, which
allows many situations forbidden by the definition of gmaps. A dart may be
sewn at any dimension to any dart, including itself or darts not previously
inserted into the map, or to several darts at the same dimension. In order to
capture precisely generalized maps, we need to introduce a new type, gmap.

5.5 Generalized maps

An object m of type gmap is basically a free map that has been proved to
be well-formed, i.e. to be satisfying the fundamental properties used in the
definition of generalized maps of dimension 2 given in the previous section.
The most natural approach in Gallina is to define gmap as the type of
pairs of a free map (called the support) and a formal proof that the free map
satisfies a well-formedness predicate that expresses said fundamental properties
of 2-gmaps. This is a dependent pair, as the second element is a proof of a
proposition parametrized by the first element. The well-formedness predicate
is defined as:

DEFINITION 9 (WELL-FORMEDNESS OF FREE MAPS) : a free map m is
well-formed if, for any k, relation (succ k m) is an involution, if for any
k<1 relation (succ k m) is irreflexive, if relation (succ 0 m)o(succ 2 m)
is involutive, and if for any k such that k>3 relation (succ k m) is the
identity:
Definition wf : fmap — Prop
1= Am: fmap
((Vk:mnat) (involution (succ k) m))
A ((Vk:mat) k<=1 — (irreflexive (succ k m)))

18

A (involutive (composition
(succ 0 m) (succ 2 m)))
A ((Vk:nat) 3<=k — (identical (succ k m)))

The last condition is added to effectively limit the number of relevant o
relations to kK = 0,1 or 2: at higher dimensions, all darts are considered to be
sewn to themselves. Thus, the type of 2-gmaps is:

DEFINITION 10 (GMAP) : an object of type gmap is a pair made up of a
free map m and a proof that m is well-formed, i.e. a term of type (wf m) :
Inductive gmap : Set
:= mkg : (Vm:fmap; Yw: (wf m)) gmap

Also specified is a selector to get the first element of the pair, called gsupport:
gmap — fmap.

Now we have a type that, by construction, exactly encompasses 2-gmaps.
However, this type is harder to handle than free maps when proving theorems,
as there is no (useful) structural induction scheme on this type; being deprived
of induction really hurts, so we had to find some kind of induction scheme
ourselves. To do so, we used another common definition of generalized maps.

5.6 Sewn-cell maps

Generalized maps are often defined in a recursive and incremental manner,
using a simple-cell-sewing operation that we note sm, of type nat — fmap
— dart — dart — fmap [33| [34]. The integer is the dimension of the
sewings, and the dimension of the affected simple cells plus 1. For instance
(sm 2 m x y) 2-sews each dart of free map m in the simple 1-cell incident to
x to the corresponding dart in the simple 1-cell incident y. More precisely, x
is sewn to y, and any dart x’ in the simple 1-cell incident to x is sewn to the
dart obtained by following from y one of the paths that lead from x to x’.
Figure 6 shows what sm does on simple examples.

Free maps built using only sm are said to be well-constructed. More precisely,
a well-constructed map is built by:

starting with the empty map;
adding all the darts;

making all 0-sewings with sm;
making all 1-sewings with sm;
making all 2-sewings with sm.

Well-constructedness is expressed in a predicate. The type of sewn-cell maps is

19

X Yo (SMOMXY) o X Yy o
X y (smlmxy). X y

o] %

o778 0 7 A s X

i @Y sm3amxy) 2t

T "»L‘\

Fig. 6. Simple cell sewing at dim. 0,1,2,3

called smap . Like gmap , smap is the set of pairs composed of a support
free map and a proof term of well-constructedness of the support.

The main advantage of smap is that such a map is built in an incremental
manner, which allowed us to prove a useful induction scheme for this type.
It roughly states that if a property is true for a map without sewings and is
preserved by sm, then it is true for any smap.

Our actual Coq specification is more general than what is shown here, in that
well-formedness and well-constructedness are parametrized by a dimension,
allowing us to work with gmaps of any dimension. Our first major result
in this specification is that any gmap support is observationally equal to
a smap support (at any dimension), which means that well-constructedness
amounts to well-formedness, order of insertions and sewings aside. Thus, we
have formally proved that the two usual definitions of generalized maps are
indeed equivalent.

From a practical point of view, it allows us to switch between the gmap types
at will while proving a property, provided it is preserved by observational
equality, which is the case for all geometrically meaningful properties. The
main consequence is that we now can indirectly reason by structural induction
on gmap , by switching to and then back from smap.

6 Conservative operations

From now on, we focus on surfaces and 2-gmaps. As we explained in Sect.
3, conservative operations are at the core of our proof of the classification
theorem. Being conservative means that they are expected to preserve the set
of subdivided surfaces. In order to maximize confidence in the conservativity

20

of these operations, they are kept as simple, local and constrained as possible.

Building operations on types gmap and smap are very hard to directly
specify: they must turn a dependent pair into another pair, which in part con-
sists in turning a proof term into another proof term, something that is quite
difficult to perform directly. The technique we use is to specify the effect of
an operation at the simple free map level, then prove a lemma stating that,
provided preconditions are satisfied, the operation preserves well-formedness
(resp. well-constructedness). The free map operation and lemma are then com-
bined to form an operation on gmap or smap. Actually, the possibility of
using this method to easily build operations on complex types was our main
motivation behind the fmap type.

6.1 Stretching of an open verter stro

We define an open vertexr as a vertex incident to a boundary. The stretching
operation splits such a vertex into two vertices connected by an open edge (see
Figure 7). We start by giving the operation in the fmap universe. It makes

. newx newy
stro M x newx newy

Z nNewy newx
o—

stro M y newx newy y X

Fig. 7. Example of stretching of a vertex
with an open edge

use of unsm, the reverse of sm.

DEFINITION 11 (STRETCHING A VERTEX WITH AN OPEN VERTEX) :
let m be a free map and x, newx and newy three darts. This function rips
the sewings of x at dimension 1, then adds an edge made up of newx and
newy, then 1-sews newy to (alpha 1 x m) and newx to x
Definition stro : fmap — dart — dart — dart — fmap
Am: fmap Ax,newx,newy:dart
(sm 1 (sm 1 (sm O (i newx (i newy (unsm 1 m x)))
newx newy) newy (alpha 1 x m)) newx x).

21

The preconditions have two purposes: to ensure first the preservation of well-
formedness by the operation, and second the conservativity of the operation,
by verifying that the operation is only used to do what it is intuitively supposed
to. A precondition is expressed in one predicate.

DEFINITION 12 (PRECONDITION FOR STRETCHING OF AN OPEN VER-
TEX) : let m be a free map and x, newx and newy three darts. These pa-
rameters may be used for open vertex stretching if m is of dimension 2, if
x belongs to m and is incident to an open vertex, and if newx and newy are
distinct and do not belong to m:
Definition pre_stro: gmap — dart — dart — dart — Prop
:= A\m:gmap AX,newx,newy:dart
(exd x m) A —(exd newx m) A —(exd newy m)
A newx # newy A (openvertex m x)

Note that the first argument, of type gmap, is used with predicate exd,
which expects type fmap. The typing problem is avoided because, using
the coercion facility, we previously told Coq to automatically cast gmap into
fmap when needed using gsupport (Sect. 5.5). Thus, in this formula, (exd
x m) implicitly stands for (exd x (gsupport m)). This allows us to use free
map operations on gmap in a very natural way. In the same way, smap is
implicitly cast into gmap, and by transitivity into fmap, so we can apply
gmap and fmap operations to smap. We can now prove with Coq that
this predicate ensures preservation of well-formedness:

LEMMA 2 (PRESERVATION OF WELL-FORMEDNESS WITH STRO) : if
pre_stro is satisfied for a set of arguments, using them for a stretching
preserves well-formedness:
Lemma WF_STRO : (Vm:gmap; Vx,newx,newy:dart)
(pre_stro m x newx newy)
— (wf 3 (stro m x newx newy))

For space concerns, it is absolutely impossible for us to present here a formal
proof of any theorem, as they are either far too long if given in full detail, or
impossible to follow if abridged.

As a CIC lemma is actually a function that transforms proof terms of the
hypotheses into a proof term of the conclusion, we use the above lemma to
build a gmap from another gmap, thus obtaining a version of stro that
yields a gmap. Note that Coq automatically infers the first element of the
pair from the second, which is thus the only one to provide:

DEFINITION 13 (STRETCHING AN OPEN VERTEX IN A GMAP) : if

pre_stro is satisfied for a set of arguments, the lemma WF_STRO is used

to build a gmap pair corresponding to the result of stretching:
Definition gstro : Am:gmap Ax,newx,newy:dart

22

(pre_stro m x newx newy) — gmap
:= A\m:gmap AX,newx,newy:dart
Ap: (pre_stro m = newzr newy) (mkg (WF_STRO p))

This is a little technical, and might be difficult to understand for readers not
accustomed to this formalism. The point was simply to show how a lemma
can be used to build a concrete object.

All other conservative operations are built with the same method: define
the operation on fmap, put all preconditions into a predicate, prove the
preservation of well-formedness and use this proof to extend the operation to

gmap.

6.2 Removal of an open edge

This is the converse of stro (and as such is not pictured): it removes unneeded
edges from boundaries. The precondition ensures that the edge itself is open
and that there is another edge on its boundary, so that removing this edge
will not remove the entire boundary.

6.3 Sliding along a boundary

This applies to places in the map where a section of the boundary has been
connected to another edge by 2-sewing that edge to one of the edges of the
boundary. This operation simply sews one of the edges right next to it instead,
intuitively sliding the 2-sewing along the boundary sections (see Figure 8,
where x is a dart of the edge that loses its 2-sewings in the process).

The precondition states that vertices on either side of the connecting edge
should be open, and that both sides of the boundary section contain at least
two darts, in order to make sure that no boundary gets suppressed in the
process and that the configuration is really that of the figure.

6.4 Merging two faces

This operation merges two distinct faces that have at least one common edge
by removing that edge and connecting what is left (see Figure 9, where x is
a dart of the removed edge).

The precondition ensures that the two faces are indeed distinct and that both

23

Fig. 8. Example of sliding

Fig. 9. Example of merging

of them contain more than one edge (one-edged faces do not have anything
left to connect).

6.5 Absorption of a one-edge face

This operation is the previous one in the case where one (and only one) of
the faces is made of a single edge. In that case, the face is simply removed, or
absorbed, by the larger face (see Figure 10, which also shows bump removal,

—>

Fig. 10. Example of absorption and bump re-
moval

and where z is a dart of the one-edged face).

24

The precondition ensures that the two faces are distinct, that one of them has
a single edge and that the other has more.

6.6 Bump remouval

This operation removes a bump, i.e. an edge closed on itself, which has no
actual relevance from a topological point of view (see Figure 10, where z’ is a
dart of the bump). There are no additional precondition.

6.7 Dart renaming

That is the only global operation: it changes the name of all the darts in
the map using a renaming function of type dart — dart. At some point,
the darts we manipulate will need to bear imposed names to be conform to
a normalization. This function must be injective on the set of darts of the
original map, otherwise some darts will be confused in the resulting map.

6.8 Slitting a verter

The slitting operation removes extraneous 2-sewings. It rips the 2-sewings
that tie together the two sides of a closed edge the end vertices of which are
respectively open and closed (see Figure 11, where 2 belongs to the opened

Fig. 11. Example of slitting

edge).

The precondition simply checks that one of the end vertices is open and the
other closed.

25

7 Normal maps and the trading theorem

7.1 Normal maps

Now that we have the conservative operations, we know precisely our topo-
logical equivalence relation between 2-gmaps. Remember that two 2-gmaps
are topologically equivalent provided one can be obtained from the other using
only a combination of any of the eight conservative operations while always
satisfying the preconditions. Topologically equivalent 2-gmaps subdivide the
same surfaces.

The next step is to prove that any open connected 2-gmap is equivalent to one
of the normal maps N, ,,. Now we need to precisely describe these maps. To
find a good candidate for N, , ., we start with a map that obviously subdivides
a surface with p punctures, ¢ handles and r twists. Then we apply as many
conservative operations as possible to it so that it becomes as small as possible,
making it easier to handle. In the end, we obtain the map on Figure 12. This

% 0,

e eg o
el s
AP
b e b,
0 p2p-1 0 g-1 012 r1
p ears q bridges r twisted ears

Fig. 12. General form of a normal map

map is made of one open edge (the horizontal upper edge on the figure) that
represents the mandatory boundary of the map. Then, from left to right,
there are p vial-shaped ear patterns (one for each puncture), g larger bridge
patterns (one for each handle) and r twisted ear patterns (one for each twist).
The names of the patterns are inspired by Griffiths [29].

A normal map is made of a single cycle of alternately 0- and 1-sewn darts,
some of which have been 2-sewn to form the patterns. Each ear pattern is
made of 6 consecutive darts. The darts of the k-th ear pattern are denoted e,
with ¢ between 0 and 5, according to the order they appear on the cycle. This
means that in ear pattern k, e} and ef are 2-sewn, as well as e} and €%, and
ek and ef are both 2-sewn to themselves.

In the same way, the 8 darts that make up bridge k are denoted bf, with i
between 0 and 7, and the 4 darts that make up twisted ear k are denoted ¢,

26

with ¢ between 0 and 3. The two darts that form the mandatory boundary are
denoted oy and o;. Thus, map N, ,, contains 2 + 6p + 8¢ + 4r darts.

7.2 Normal maps in Coq

Normal maps are entirely characterized by p, ¢ and r. Thus, in Coq, we should
be able to build a normal map, of type smap , using only the three natural
numbers. The darts in normal maps will be obtained using the ¢dg dart gen-
erator. Thus, dart oy and o; are actually (idg 0) and (idg 1), eF is (idg
(2+6k+i)), bF is (idg (2+6p+8k+i)), and tF is (idg (2+6p+8q+dr+i)).
To build the map, we write recursive Coq functions that deal with one step of
the construction process of a normal map:

(dartmap n) yields a the 0- smap only containing the darts (idg 0) to

(idg (n-1));

e (edgemap n) yields the 1- smap made by taking (dartmap 2n) and 0-
sewing every (idg 2k) dart to (idg (2k+1)). This is a collection of n
edges;

e (cycle n) yields the 2- smap made by taking (edgemap n) and 1l-sewing
every (idg (2k+1)) to (idg (2k+2)), with a special case with (idg
(2n-1)) that is instead 1-sewn to (idg 0). Thus, we obtain a cycle of
alternately 0- and 1-sewn darts;

e (addears p q r) yields (cycle (1+3p+4q+2r)) in which the edge incident
to ef is 2-sewn to ef using sm, for each k under p. This takes care of the
ear patterns;

e (addbridges p q r) yields (addears p q r) in which the edge incident
to bf is 2-sewn to b%, and the edge incident to b% is 2-sewn to b%, for each k
under q. This takes care of the bridge patterns;

e (makenmap p q r) yields (addbridges p q r) in which the edge incident

to tf is 2-sewn to t¥, for each k under r. This takes care of the twisted ear

patterns, thus completing the normal map.

The normal maps are indeed determined only using the numbers p, ¢ and r.
Thus, in our Coq specification, the type mnmap of normal maps is simply
the type of triplets of natural numbers, with selectors named nmp, nmq and
nmr. We then use the coercion facility to automatically cast such triplets into
smap when needed using function makenmap. Thus, we can transparently
use nmap objects as free maps.

27

7.8 The trading theorem

As we mentioned in the introduction, part (i) of the classification theorem is
split again into two parts. The first half (the normalization theorem) states
that any map belongs to one of the classes (p, ¢, r), the second half (the trading
theorem) identifies all classes to classes with r < 2. We first deal with the latter,
which is much simpler. In our specification, the trading theorem states that:

Theorem 12 Normal map N4, is equivalent to Ny g41,—2 if 7 > 2.

Thus, this theorem actually allows to trade two twists in a normal map for
an additional handle, provided there were at least three twists in the original
map.

Our proof is very straightforward, it is in fact similar to the one in [25]. Tt
simply consists in applying 10 conservative operations to N, ,, and proving
that the result is IV, ;11 ,—2. The operations are the following, with new darts
called 7g, 71, 7o and i3:

—_

stretch the vertex incident to 3 with an open edge made of iy and iy;
slide the 2-sewing of £3;

stretch the vertex incident to #3 with an open edge made of iy and i;
slide the 2-sewing of ¢?;

slide the 2-sewing of t1;

slide the 2-sewing of #3;

slide the 2-sewing of £3;

remove the open edge incident to 9;

remove the open edge incident to ti;

rename the darts properly (as dart names in a normal map are imposed).

W N

=~~~
© 00 ~J O Ot
N N N N N N N N N N

—~
=]

Figure 13 illustrates these operations. Each subfigure shows the result of the
operation written in the caption. A dashed line illustrates what the latest
operation did, by pointing to the new edge in case of vertex stretching, pointing
to the vertex where a removed edge stood before, or by showing the movement
of the sewing in case of sliding. The i, are generated using idgen, a function
based on idg that yields darts that do not belong to any given map. All steps
are formally handled in a similar way. Let us use the first step as an exemple.

7.4 Step 1

There are three substeps for each step:

28

=)

(A) Two views of the starting normal (B) Step 1: (C) Step 2: slide the

map stretch the 2-sewing of tJ
vertex incident
to t?,)

(D) Step 3: stretch the (E) Step 4: slide the (F) Step 5: slide the
vertex incident to t2 2-sewing of 19 2-sewing of t}

(G) Step 6: slide (H) Step 7: slide the (1) Step 8: remove the
the 2-sewing of t3 2-sewing of t3 edge incident to ¢)

>

(1) Step 9: remove the edge incident to t3

Fig. 13. Steps of the trading theorem

(1) prove that the map obtained after the previous step satisfies the precon-
dition for the next operation. Here, there is no previous step, so we take

the starting normal map:

LEMMA 3 (PRECONDITION FOR STEP 1 IS SATISFIED) : stretching
the vertex incident to ¢3 with two darts that do not belong to m is

allowed in any normal map with » > 2:
Lemma pre_stepl : (Vm:nmap)

29

(nmr m)>2 -> (pre_stro m x (idgen m 0) (idgen m 1))
(2) perform the operation:
DEFINITION 14 (RESULT OF STEP 1) : perform the step
Definition stepl : Am:gmap Ap: ((nmr m)>2)
(gstro (pre_stepl p))
(3) build a library of lemmas describing exd’s and alpha’s behaviours after
application of stepl. It will be used in the following steps.

After step 9, the map has the same structure as N, 4+1,—2, but the darts are
named differently, thus we add a renaming step so that the names match.
Once this tenth step is over, we prove that the resulting map is observation-
ally equal, and thus topologically equivalent, to NN, ;11 ,_2. Combining all the
intermediate results, we conclude that N, ,, is equivalent to IV 411 ,—2, thus
ending our formal proof of the trading theorem. We would like to stress that
the whole proof was entirely checked by the Coq system.

8 The normalization theorem

8.1 Quasi-normal maps

This theorem is much more difficult to prove. Informally, it states:

Theorem 13 Any open connected 2-gmap is topologically equivalent to one
of the normal maps.

Our proof is in two parts that are joined together using a new subtype of
smap, the type of quasi-normal maps.

Definition 14 A smap m of dimension 2 is (p,q,r)-quasi-normal if:

e map N, isincluded inm, i.e. all its darts and sewings are in m, with the
exception of the 1-sewings of oy to ay(0g), which is replaced here by another
1-sewing, thus connecting this normal section of m to the rest of m;

m has only one face;

all vertices in m are incident to a boundary;

m contains no bump.

A quasi-normal map is essentially a map that “contains” a normal map and
that also has several useful properties. A very important dart in a quasi-normal
map is what we call the 1imit dart, denoted [d: it is the dart that comes right
after the normal part of the gmap. Figure 14 shows one such map and its
limit dart. Surrounded on the figure is the non-normal part of the quasi-map.

30

Fig. 14. Example of (1,1,1)-quasi-normal
map

The type of quasi-maps is gmap, it is defined much like previously as a
triplet of a smap, a mnmap, and a proof that the smap satisfies the
above properties with the nmap as the normal section.

The two parts of the normalization theorem are:

e the cleaning theorem, that states that any open connected 2-gmap is equiv-
alent to a quasi-normal map the normal section of which is Ny o;

e the absorption theorem, that incrementally “grows” the normal section of
the quasi-normal map, until it encompasses the whole map.

In the following subsections, we give a sketch of the proofs.

8.2 Netherian induction

Both parts are proved using the proof technique called Neetherian induction,
which is an extension of structural induction. Coq uses a variant of this tech-
nique based on the builtin notion of accessibility.

Let E be any set and R be a binary relation in £: R C E x E. As usual, for
any x,x’ € E, we denote x R ' the fact that there exists an R-arc from z to
x'. We say that x is a R-predecessor of ' and 2’ is a R-successor of x.

Intuitively, an element = € E is said to be R-accessible if and only if any
descending R-chain beginning by z, i.e. * = xy,29,..., 2k, Tgs1,... With
o Rxy,..., 2541 R xy, ..., is finite. The Calculus of Inductive Constructions
expresses that with the notion of accessibility.

Definition 15 An element * € FE is said to be accessible by R, or R-
accessible, if all its R-predecessors are themselves R-accessible. If x has no
R-predecessor, x is said to be immediately R-accessible.

31

It is clear that, if x is immediately R-accessible, then it is R-accessible. For in-
stance, let £ = N be equipped with the usual natural strict order <. Then, 0 is
immediately <-accessible since it has no predecessor, 1 is <-accessible because
its only <-predecessor is 0, 2 is <-accessible because its only <-predecessor is
1, etc. Then all the natural numbers are <-accessible.

If E0 is the set of the elements of E/ which are immediately R-accessible, the
set of all the elements of £ which are R-accessible is exactly (R* FE0), where
R* as usual denotes the reflexive transitive closure of R.

Definition 16 The set E equipped with R is said to be well-founded, or
Noetherian, if every x € E is R-accessible.

If the context is clear, it is simply said that R is well-founded or Neetherian.
In this case, if we want to prove a property P, for any x € E, the Neetherian
induction principle states that we can assume “for free” that P, is true for any
y € E such that y R x.

In our example, N equipped by < is Neetherian, since £0 = {0}, and (<*
{0}) = N. Then the Neetherian induction principle for (N, <) corresponds to
the classical “general induction™ to prove P, for any n, assume Py for kK < n
and use that to prove P,.

Then, the following result can immediately be proved using Ncetherian induc-
tion.

Theorem 17 (E, R) is Noetherian if and only if, for every x € E, there is
no infinitely descending R-chain from x.

In our map case, F is a type of maps, smap for the cleaning part, gmap for
the absorption part. Proving that the processes realizing the two parts by map
transformations are finitely terminating needs suitable well-founded relations
on these map types.

8.3 The cleaning theorem

This theorem states that any open connected 2-gmap m is equivalent to a
quasi-normal map whose normal section is Ny o. The proof of the cleaning
theorem is split in five lemmas, each showing that m is equivalent to a map
that satisfies one more property than in the previous step:

(1) step 1: m is equivalent to a map containing Ny ;

(2) step 2: like step 1, but the map also contains no bump;
(3) step 3: like step 2, but the map also contains no one-edged face;

32

(4) step 4: like step 3, but the map also contains only one face;
(5) step 5: like step 4, but the map also only has open vertices, thus is quasi-
normal.

Step 1 simply renames two darts of an open edge into oy and o0q, thus creating
the normal section of the map: indeed, normal map Ny only contains these
two darts, so in order to be contained by a map, that map only needs to
contain the open edge made of oy and o;.

The four other steps ensure one of the other properties of the quasi-maps
by repeatingly applying a conservative operation. The convergence is proved
by Neetherian induction. The corresponding relation is denoted <.4, which is
proved well-founded in smap .

Definition 18 For any smap m and m/, the relation m <. m' is satisfied
if the number of closed darts is strictly lower in m than in m'.

In step 2, we want to prove that any open connected 2-gmap m has an equiv-
alent containing Ny o with no bump. We first use the induction principle to
assume that there is such an equivalent for any map m’ <.; m. Then we test
whether there is a bump in m. If not, then m itself is the sought equivalent. If
there is one, we remove it with conservative operation rmbump and show that
the resulting map m” is smaller than m w.r.t. <.. Applying the induction
hypothesis to m”, we find a map with the good properties that is an equiv-
alent of m”, but then also of m by transitivity of equivalence, thus finishing
the proof of step 2.

The other three steps, step 3 to step 5, work in the same way, respectively
with operations absorb, merge and slit. Figure 15 shows each step of the

0 O

Fig. 15. Example of cleaning

cleaning starting from a sample 2-gmap. It is clear that the number of closed
darts in the current map is strictly decreasing from step 2 to step 5.

33

8.4 The absorption theorem

This is by far the most difficult part of the proof, and also clearly the least
intuitive. It only deals with quasi-normal maps. It is structured like step 2 of
the cleaning theorem, except that it uses another relation, and that instead
of simply checking whether the map contains bumps, it computes which of
fourteen different classes the map belongs to, applying a different series of
conservative operations each time.

The class of the map depends on its configuration near ld. For example, one
corresponds to maps where [d is open, another to maps where [d is incident to
a twisted ear pattern, another to maps where [d is incident to a bridge pattern,
etc., with numerous subcases, that are too long to present in this paper. Then,
for each class among the fourteen, an appropriate treatment is applied.

We prove that the process converges to a normal map by Neetherian induction
on a vector computed from the map. As each step in the absorption process
lexicographically decreases the vector, and that the smallest vectors are shown
to only belong to normal maps, we infer that any gmap can be normalized in
a finite number of steps. The vector is made of 8 natural numbers vy, vy, ..., v7
which we use to define well-founded relation <, on gmap :

Definition 19 For any gmap m and m’, m <, m' is satisfied if the vector
of m is lexicographically smaller than that of m/.

Each component v; is a count of darts with a specific feature, or a number
reflecting a characteristic of [d in the current map, e.g. a distance to a well
chosen other dart. For instance, vy is the number of darts in the non-normal
section, vz is the number of darts between [d and the closest closed dart z, v;
is 0if x €< oy o g > (Id) and 1 otherwise, etc. We remind that Id is the dart
that sits between the normal and non-normal parts of the qmap.

These are values that were empirically devised so that they worked well for our
inductive proof. More specifically, the v; are carefully chosen so that a single
step in the absorption process will decrease one of the v; without altering the
v; for j < <. Unfortunately, the complexity of the absorption process makes
the definition of v; themselves quite lengthy and complex. It is necessary to
delve into the details of the theorem and its proof in order to understand
why these v; do indeed evolve this way, which makes it hard to describe them
succinctly; even harder would be to give an intuitive idea as to why they
behave as expected.

The only simple one to grasp is vy, the number of darts in the non-normal
section. We prove that all steps of the absorption theorem either decrease the
number of such darts or leave it unchanged and decrease some other v;. Fur-

34

thermore, enough vg-decreasing steps will be applied so that it will eventually
reach 0, the vy for a normal map. Similarly, we show that no step increases
v1 unless vy decreases at the same time, and so forth for the other v;. In the
end, all these results taken together prove that each step lexicographically
decreases the vector until vy = 0, which by definition characterizes normality.
In other words, each step brings the map closer to normality.

The strength of these proofs is to certify that these complicated operations are
indeed correct and actually lead to the desired result, which cannot be ensured
when writing a conventional program. For more detail about the steps and the
vector, refer to [11].

9 Conclusion

In this article, we have shown the basic structure of a Coq specification of
generalized maps, which topologically model combinatorial surfaces. We then
have shown how we used it to adapt and formally prove the first part of the
famous theorem of classification of surfaces applying to subdivisions instead,
the subdivisions being classified according to the set of surfaces that they
subdivide. This shows that the Coq system can actually be used in this field,
although the size of our development (over 100,000 lines) [12] suggests that it
could benefit from dedicated tactics and commands to relieve the user a little.

We now have a directly usable powerful specification of generalized maps that
can be used for further studies. The most obvious use would be to extend our
proofs in three directions:

- First, we must prove the second part of our classification theorem which as-
serts that any two subdivision classes are not confused. Following [26] for the
closed surfaces, we must establish the link between the open surface equiva-
lence and the triple (p, ¢,) with < 2, which can be admitted as the invariant
of an open surface. We must prove that our elementary transformations pre-
serve it, what seems easy for p and ¢, but more difficult for r, for which the
orientability notion must be deepened. Then, two distinct normal forms nec-
essarily correspond to inequivalent surfaces. A useful task will be to formally
establish the relationship between ¢ and y, the Euler-Poincaré characteristic
(Sect. 4), which is often used to classify surfaces.

- Second, we have to include the closed subdivisions. For instance we could as-
sume, like Griffiths does for surfaces, that puncturing in a closed subdivision,
conservatively transforming it, then closing back the puncture, is conservative
as a whole.

- Third, we could specify embeddings in order to obtain surface classification
from subdivision classification. This work involves to consider classical notions
of topology, with continuity, homomorphisms, homology, probably by using an

35

axiomatic system for the real numbers.

This specification of gmaps could probably also be used as a basis for work in
the discrete geometry field, where each voxel could be represented by a cubic
map, which would then be combined to form discrete surfaces [2]. We could
also use the program eztraction facility of Coq to automatically generate from
our proof a program that computes the (p,q,r) of any gmap. Moreover, a
reasonable but still nontrivial modification of our proof could yield a certified
program listing all the conservative operations used during normalization.

Finally, our long-term project is to revisit the foundations of the computational
geometry, using combinatorial map concepts for topology and Coq for the
specification and extraction of certified fonctional algorithms, rather than to
produce them from scratch, like in [22], without proof of correctness, or like
[21], with proof of total correctness. However, it will be necessary to study
the insertion of numerical computations and round-off errors in such a formal
proof framework, what always remains a difficult challenge in theorem provers.

Acknowledgements

We are very grateful towards the reviewers and P. Lienhardt whose criticisms,
requests and suggestions have allowed to improve this article substantially.

References

[1] Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development
- Coq’Art: The Calculus of Inductive Construction. Springer-Verlag (2004).

[2] Bertrand, G., Malgouyres, R.: Some topological properties of surfaces in Z3.
Journal of Mathematical Imaging and Vision 11 (1999) 207-221

[3] Bertrand, Y., Dufourd, J.-F.: Algebraic specification of a 3D-modeler based on
hypermaps. Graphical Models and ITmage Processing 56:1 (1994) 29-60

[4] Brisson, E., Representing Geometric Structures in d Dimensions: Topology and
Order. In ACM Symposium on Computational Geometry (1989) 218-227

[5] Brun, C., Dufourd, J.-F., Magaud, N.: Designing and proving correct a convex
hull algorithm with hypermaps in Coq. Computational Geometry - Theory and
Applications 45:8 (2012) 436-457

[6] Bryant, R.P., Singerman, D.: Foundations of the Theory of Maps on Surfaces
with Boundaries. Quat. J. Math. Oxford 36 (1985) 17-41

36

[7] Chou, S.C.: Mechanical geometry theorem proving. D. Reidel Publishing
Company (1988)

[8] Coq Development Team: The Coq proof assistant reference manual.
http://coq.inria.fr/doc/main.html

[9] Coquand, T., Huet, G.: Constructions: a higher order proof system for
mechanizing mathematics. In EUROCAL (1985) Springer-Verlag LNCS 203

[10] Cori, R.: Un Code pour les Graphes Planaires et ses Applications. Société Math.
de France, Astérisque 27 (1970)

[11] Dehlinger, C.: Spécifications et preuves en Coq pour les surfaces combinatoires et
leur classification. PhD Thesis, Strasbourg University (2003), http://dpt-info.u-
strasbg.fr/~ jfd/DD-CGTA13/theseCD.ps.

[12] Dehlinger, C.: Coq Development on Combinatorial Surfaces. Strasbourg
University (2003), http://dpt-info.u-strasbg.fr/~ jfd/DD-CGTA13/ngold.tar.gz.

[13] Dehlinger, C., Dufourd, J.-F.: Formalizing generalized maps in Coq. Theoretical
Computer Science 323 (2004) 351-397

[14] Dehlinger, C., Dufourd, J.-F.: Formalizing the trading theorem in Coq.
Theoretical Computer Science 323 (2004) 399-442

[15] Dehlinger, C., Dufourd, J.-F., Schreck, P.: Higher-Order Intuitionistic
Formalization and Proofs in Hilbert’s Elementary Geometry. In Automated
Deduction in Geometry (2000). Springer-Verlag LNAT 2061 306-323

[16] Dufourd, J.-F.: Formal specification of topological subdivisions using
hypermaps. Computer-Aided Design 23:2 (1991) 99-115

[17] Dufourd, J.-F.: An OBJ3 functional specification for the boundary
representation. In ACM Siggraph Symp. on Solid Modelling (1991) 61-72

[18] Dufourd, J.-F.: Algebras and formal specifications in geometric modelling. The
Visual Computer 13 (1997) 61-72

[19] Dufourd, J.-F.: Polyhedra genus theorem and Euler formula: A hypermap-
formalized intuitionistic proof. Theor. Comput. Sci. 403:2-3 (2008) 133-159

[20] Dufourd, J.-F.: An Intuitionistic Proof of a Discrete Form of the Jordan
Curve Theorem Formalized in Coq with Combinatorial Hypermaps. J. Autom.
Reasoning 43:1 (2009) 19-51

[21] Dufourd, J.-F., Bertot, Y.: Formal Study of Plane Delaunay Triangulation. In
Interactive Theorem Proving Conference I'TP’10. Springer-Verlag LNCS 6172
(2010) 211-226

[22] Dufourd, J.-F., Puitg, F.: Fonctional specification and prototyping with oriented
combinatorial maps. Computational Geometry - Theory and Applications 16
(2000) 129-156

[23] Firby, P. A., Gardiner, C. F.: Surface Topology. Ellis Horwood Ltd. (1982)

37

[24] Fomenko, A. T.: Differential Geometry and Topology. Consultant Associates
(1987)

[25] Fomenko, A. T.: Visual Geometry and Topology. Springer-Verlag (1994)

[26] Gallier, J., Xu, D.: A Guide to the Classification Theorem for Compact Surfaces.
Geometry and Computiong 9, Springer-Verlag (2013)

[27] Gelernter, H.: Realization of a geometry theorem proving machine. In
Computers and Thought (1963) MacGraw-Hill 134-152

[28] Gonthier, G.: Formal Proof - The Four Color Theorem. Notices of the AMS
55:11 (2008) 13821393

[29] Griffiths, H.: Surfaces. Cambridge University Press (1981)

[30] Jacques, A.: Constellations et graphes topologiques. In Combinatorial Theory
And Applications Symp. (1970) 657-673

[31] Kahn, G.: Elements of Constructive Geometry, Group Theory, and Domain
Theory. Coq contribution, http://coq.inria.fr/contribs-eng.html.

[32] Knuth, D.E.: Axioms and Hulls. Springer-Verlag (1992) LNCS 606

[33] Lienhardt, P.: Subdivisions of N-Dimensional Spaces and N-Dimensional
Generalized Maps. In Computational Geometry ACM Symp. (1989) 228-236

[34] Lienhardt, P.: Topological models for boundary representation - A survey.
Computer Aided Design 23 (1991) 59-81

[35] Lienhardt, P.: N-Dimensional Generalized Combinatorial Maps and Cellular
Quasi-Manifolds. In Int. J. Comput. Geometry Appl.4:3 (1994) 275-324

[36] Martin-Lof, P.: Intuitionistic Type Theory. Bibliopolis (1984)
[37] Massey, W.S.: Algebraic Topology, An Introduction. Springer (1977)

[38] Meikle, L.I., Fleuriot, J.: Mechanical Theorem Proving in Computational
Geometry. In Automated Deduction in Geometry ADG’04. Springer-Verlag
LNCS 3763 (2004) 1-18

[39] Parent, C.: Synthesizing proofs from programs in the calculus of inductive
constructions. In Mathematics of Program Construction (1995). Springer-Verlag
LNCS 947 351-379

[40] Paulin-Mohring, C.: Inductive Definition in the System Coq - Rules and
Properties. In Typed Lambda-calculi and Applications (1993). Springer-Verlag
LNCS 664

[41] Pichardie, D., Bertot, Y.: Formalizing Convex Hulls Algorithms. In Theorem
Proving in HOL Conf. (2001). Springer-Verlag LNCS 2152 346-361.

[42] Puitg, F., Dufourd, J.-F.. Formal specifications and theorem proving
breakthroughs in geometric modelling. In Theorem Proving in HOL Conf.
TPHOL’98. Springer-Verlag LNCS 1479 (1998) 401-427

38

[43] Puitg, F.: Preuves en modélisation géométrique par le calcul des constructions
inductives. PhD Thesis, Strasbourg University (1999).

[44] Puitg, F., Dufourd, J.-F.: Formalizing mathematics in higher-order logic: A case
study in geometric modelling. Theoretical Computer Science 234 (2000) 234 1-57

[45] Requicha, A.A.G.: Representations for Rigid Solids. ACM Computing Surveys
12:4 (1980) 437464

[46] Seifert, H., Threlfall, W.. A Textbook of Topology. Pure and Applied
Mathematic , Academic Press, Inc. (1980).

[47] Tutte, W.E.. Graph Theory. In Encyclopedia of Mathematics and its
Applications. Addison Wesley, Reading, MA (1984)

[48] von Plato, J.: The axioms of constructive geometry. Annals of pure and applied
logic 76 (1995) 169200

39

