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Abstrat

We desribe one of the �rst attempts at using modern spei�ation tehniques in

the �eld of geometri modelling and omputational geometry. Using the Coq system,

we developed a formal multi-level spei�ation of ombinatorial maps, used to rep-

resent subdivisions of geometri manifolds, and then exploited it to formally prove

fundamental theorems. In partiular, we outline here an original and onstrutive

proof of a ombinatorial part of the famous Surfae Classi�ation Theorem, based

on a set of so-alled �onservative� elementary operations on subdivisions.

Key words: ombinatorial surfaes, lassi�ation, generalized maps, formal

spei�ation, assisted proof, Coq system

1 Introdution

Thanks to their reent rise in quality, e�ieny and user-friendliness, formal

spei�ation and proof tools are starting to be used in all mathematial �elds,

inluding geometri modelling and omputational geometry. In this paper, we

explain how we built a spei�ation of the topology of geometri manifolds in

a higher-order logi framework with the Coq theorem proving system, then

use this spei�ation to formally prove a ombinatorial part of the famous

and non-trivial Surfae Classi�ation Theorem, restrited to ompat surfaes

with boundary.

Topology is here desribed by generalized maps [33℄ [34℄, a ombinatorial model

of subdivisions of manifolds. We speify gmaps (short for generalized maps),

in the Calulus of Indutive Construtions (CIC) [9℄ [40℄, a higher-order logi

that allows manipulation of types and objets as well as propositions and
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proofs. We then express in this alulus the properties that we wish to show,

and prove them by building orresponding proof terms from the axiom terms,

using the inferene rules of the alulus. In pratie, all the spei�ation, proof

disovery and proof heking work is done with help of the Coq proof assistant

[9℄ [1℄. Some of the theorems we thus proved are very di�ult, whih testi�es

for the power of these tools.

Our spei�ation features a 3-level hierarhy of inreasingly �tting but harder-

to-manipulate types to represent gmaps, a large number of onstrutions, ex-

ploration and modi�ation operations on gmaps, and over a thousand for-

mally expressed and proved theorems, inluding in partiular a topologial

version of a part of the famous Surfae Classi�ation Theorem. These theo-

rems were proved using a wide range of tehniques, suh as strutural indution

or N÷therian indution.

The long-term objetive of this work is to provide a very solid theoretial

basis for the development of geometri modellers, i.e. programs whih allow

to build and manipulate ombinatorial surfaes and even ombinatorial man-

ifolds of higher dimensions. Spei�ation and proof tehniques allow �rstly to

hek the validity and relevane of models and implementations by proving

theoretial results related to them. This is the ase here for the Surfae Clas-

si�ation Theorem. Seondly, they allow to formally hek the orretness and

termination of algorithms and operations. In our eyes, these two goals are of

equal importane, and justify the need to develop and improve these already

powerful formal tehniques, so that they an be used to takle di�ult prob-

lems of geometri modelling and omputational geometry. For instane, these

tools ould be very helpful in the study of the de�nition and manipulation of

disrete surfaes, whih are a very important link between omputer graphis,

geometri modelling and imaging.

The �rst part of this researh is detailed in [13℄ and [14℄, whih are mainly

intended to the formal spei�ation and automated proof ommunity. In the

present paper, we give a omplete panorama of our work inluding the seond

part, while being less exhaustive on formal aspets and more foused on geo-

metri modelling features. However, the entire Coq soure of the development

an be downloaded [12℄.

The Surfae Classi�ation Theorem is one of the most deep and exiting result

in algebrai topology of dimension 2. In [26℄, Gallier and Xu o�er a substantial

history of the disovery and of the numerous attempts to prove this result.

Indeed, a rigorous proof always needs many de�nitions and lemmas around

topology, algebra and surfaes. So, the theorem says that, despite the fat

that surfaes appear in many diverse forms, they an be lassi�ed, whih

means that every (ompat) surfae is equivalent to exatly one representative

surfae, also alled a surfae in normal form.
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Of ourse, to make this statement rigourous, it is neessary to preise: (i) what

is a surfae, (ii) what is the equivalene of surfaes, (iii) what are normal forms

of surfaes. This is the subjet of entire textbooks [37,23,46,29,26℄, in whih

the Surfae Classi�ation Theorem is the major result. However, the basi

mathematial tools, the normal forms of surfaes, and the proof tehniques,

an di�er signi�antly. In the following, to address the problem, we will provide

a way whih is based on ombinatorial tools and formalisms well-adapted to

the help of an up-to-date interative proof assistant.

After this introdution, we brie�y present some related work in Set. 2. In Set.

3, we state preisely what we mean by surfaes, emphasizing the link between

surfae subdivisions and generalized maps. In Set. 4, we desribe intuitively

and then formally the model of generalized maps, as well as important related

basi notions. In Set. 5, we introdue the Coq notation to desribe the basi

types involved. In Set. 6, we start fousing on the lassi�ation theorem

by listing a set of operations on generalized maps that we all onservative,

and use them to de�ne a notion of topologial equivalene. In Set. 7, we

desribe the easier seond half, alled the trading theorem, of the part of the

lassi�ation theorem we deal with. In Set. 8, we deal with the more omplex

(and meaningful) �rst half, alled the normalization theorem, and we onlude

in Set. 9.

2 Related work

There are several approahes to the representation and building of geometri-

al objets: using equations, viewing them as Boolean ombination of basi

objets, or desribing their boundaries. In the early 80s, Requiha [45℄ de-

signed a framework to ompare the di�erent solid representation methods. In

the late 80s, Lienhardt developed a powerful tool for boundary representation,

the generalized maps, or gmaps [33℄ [34℄. This model is an extension of Cori's

hypermaps [10℄, whih were themselves inspired by Jaques and Tutte's om-

binatorial maps [30℄ [47℄. The generalized maps have the same modeling power

as other models, for instane the ordered strutures of Brisson [4℄, in the sense

that they an model the mesh topology of any surfae, open (i.e. with bound-

aries) or not, orientable or not. Their advantages are a preise mathematial

desription in terms of algebrai ombinatorial struture, an interesting sav-

ing of onepts making implementations easier, and a great extension power

allowing to desribe manifolds of any dimension [34,35℄.

Despite the e�orts to improve them, the topologial models used for geometri

modelling, inluding gmaps, remain quite ompliated, often spawning very

omplex algorithms. However, quite little work has been done to formally

speify them in order to redue the odds of implementation faults. Several
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spei�ation tehniques have been experimented, suh as set-based models,

algebrai spei�ations, term rewriting, funtional programming. For refer-

enes, see for instane [18℄. Dufourd developed a generi algebrai spei�ation

for subdivisions [16℄ [17℄ on whih an interative 3D topology-based modeller

Topo�l designed by Bertrand was based [3℄. Finally, an attempt of funtional

spei�ation and programming in OCaml of lassial omputational geometry

problems with ombinatorial maps is related in [22℄. One of the main short-

omings of these spei�ation experiments is their lak of using supports for

formal and omputer-veri�able proofs. But even those fall short, as their proof

failities are outdated. Hene our motivation to work with a state-of-the-art

spei�ation and proof assistant.

Theorem provers have indeed gone a long way. Among the �rst, one an ite

Automath by de Bruijn, based on a typed lambda-alulus, and Prolog by

Colmerauer and Kowalski, implementing reasoning by resolution in lassi-

al �rst-order logi. Both date bak to the sixties. Unlike these two, mod-

ern provers are based on higher-order logis, allowing quanti�ation over sets,

types and funtions. There are urrently two lasses of proof assistants: theo-

rem provers, that are dediated to one or several �elds and work by running

speialized proof searh algorithms against the sought goal, for example PVS,

and tati provers, generi proof systems that work by re�ning a goal using

simple ommands alled tatis, for instane Isabelle. The Coq system [8℄,

based on the Calulus of Indutive Construtions, is one of the most powerful

of these, and has already been suessfully used in many di�erent �elds.

Geometry, but not geometri modelling, has always been popular for auto-

mated dedution. One of the very �rst automati theorem provers was ded-

iated to plane geometry [27℄, reasoning with the resolution rule from well-

hosen ad ho axioms. Heyting's intuitionisti plane a�ne geometry axiomati

system was used by von Plato [48℄ and Kahn [31℄ to develop and test in Coq

their own onstrutive theory of ordered a�ne geometry. We used Coq to study

Hilbert's axiomatis in a onstrutive framework [15℄. Besides these �pure� ge-

ometry approahes, algebrai resolution methods were also implemented in an

ad ho way, most notably in [7℄. Pihardie and Bertot formalized in Coq the

development of proved onvex hull algorithms from an axiomati system by

Knuth [32℄ [41℄, while Meikle and Fleuriot takled similar problems in Isabelle

[38℄.

Combinatorial hypermaps have been formalized in Coq/SSRe�et by Gonthier

et al. to prove the very di�ult Four Color Theorem [28℄. Finally, the only

geometri modelling-related automated dedution experiments with ombina-

torial maps that we are aware of is Puitg and Dufourd's proofs of a planarity

riterion and the Euler-Poinaré formula [42,19℄ [44℄, leading to the formal

proof of a disrete Jordan urve theorem in orientable losed surfaes [20℄.

Very reently, orretness proofs of algorithms in the ontext of hypermaps
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were onduted for onvex hull problems [5℄, and Dufourd and Bertot have

ahieved in Coq a proof of total orretness of a Delaunay 2D algorithm [21℄.

Our original idea to prove the lassi�ation theorem was to adapt in a for-

mal ontext one of the lassial proofs. Moreover, following Gri�ths [29℄, we

wanted to avoid lassial mathematial treatments with topologial spaes,

ontinuity, homeomorphisms and homology, in favor of a diret proof with

ombinatorial arguments using the intuitive notion of generalized map. We

then deided to build a new proof adapting the attrative approah of Grif-

�ths with �paper surfaes� − also alled �polyhedral surfaes� or �rubber sheet

surfaes� by Seifert and Threlfall [46℄ − to the gmap notions. So, we fully use

notions suh as panel, panel addition, reasoning by strutural and N÷therian

indution as well. However, to use the Coq system, we had to be extremely

rigorous in the apture of these notions, to avoid axioms given by the writ-

ing of �agreements� [29℄, and to learly separate what is geometry, topology

and ombinatoris. Although we exluded approahes based on word rewriting

whih seemed too far from this goal, we were inspired by Fomenko's work [25℄,

to de�ne some onservative operations able to prove what is alled the trading

theorem and the normalization theorem.

3 Surfaes and subdivisions

As it is the basis of algebrai topology in dimension 2, the approah that we

follow in this setion is ommon to most textbooks on surfaes [37,23,46,29,26℄,

but our terminology is mainly borrowed from Gri�ths [29℄. Classially, a sur-

fae (or 2-dimensional manifold) is de�ned as a Hausdor� spae where eah

point's neighborhood is homeomorphi to either R
2
or the half-spae y ≥ 0.

This de�nition is �ne for mathematial study, but not for atual omputer use:

it is too abstrat to realistially base a modeller on it. This kind of ontinu-

ous objet being too hard to manipulate, surfaes are often modelled instead

by using ombinatorial and modular models, whih allow easier storing and

handling of surfaes. A very ommon approah is to subdivide a surfae into

simple elementary surfaes and see how these elementary briks are onneted

to one another to form the original surfae.

Depending on the model, the elementary surfaes may be triangles, or, in our

ase, panels. A panel is a surfae that is homeomorphi to a dis, i.e. that is

the image of a dis by a biontinuous bijetion to it. Figure 1 shows a few

panels: (a) a dis, (b) a polygon, (c) a slit ring, and (d) a ap. Panels have

a single boundary whih is a Jordan urve deomposed into a sequene of

Jordan ars, alled edges, bounded by points, alled verties. For us, a surfae

is a pathwork of panels sewn along their edges. Some edges may be unsewn,

they orrespond to the boundaries of the subdivided surfae. Eah boundary
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(b) (c)(a) (d)

Fig. 1. Examples of panels

is a Jordan urve determining a hole in the surfae.

Figure 2 shows a few examples of subdivided surfaes. Surfae (a) is a triangle,

(e)

(c)(b)(a)

(d)

Fig. 2. Examples of surfae subdivisions

made of four panels. It has a single boundary. Surfae (b) is a ring, made of a

single panel in whih two parts of the boundary are sewn in order to lose the

ring. It has two boundaries (the �inside� and �outside� boundaries). Surfae

(c) is a M÷bius strip, a ring in whih the panel is twisted before its ends

are sewn. It has a single boundary. Surfae (d) is a torus, made of a single

bent retangular panel the opposite sides of whih are sewn to eah other.

It has no boundary. Finally, surfae (e) is a torus that has been puntured,

giving it a boundary. This approah allows to model open (i.e. with �nitely

many boundaries) or losed (i.e. without boundary) ompat surfaes as well

as orientable or non-orientable ompat surfaes, like the M÷bius strip or the

Klein bottle.

The theorem of lassi�ation deals with the lassi�ation of ompat surfaes

aording to their topology. Two surfaes belong to the same lass if they are

homeomorphi, i.e. if there exists a biontinuous bijetion from one onto the

other. In textbooks, the theorem has di�erent equivalent formulations. The

one that we retain here states:

Theorem 1 (i) Any onneted ompat surfae with boundaries belongs to

one lass, the members of whih are homeomorphi to eah other. Eah lass

is haraterized by a triplet of natural numbers (p, q, r) with r ≤ 2.
(ii) For r ≤ 2, r′ ≤ 2 and (p, q, r) 6= (p′, q′, r′), the lasses represented by

(p, q, r) and (p′, q′, r′) are distint.

6



Of ourse, other formulations are possible when one retains other normal

forms, i.e. representatives of the lasses [37,23,46,29,26℄. Moreover, although

the theorem also holds for losed surfaes − and is often �rst proved for them

−, whih are obtained from open surfaes by adding lids on their holes, we

remind the reader that we fous on open surfaes in this paper.

The values of p, q and r are very meaningful regarding the surfaes in the

orresponding lass: eah surfae in lass (p, q, r) features p puntures (in ad-

dition to the outer boundary), q handles and r twists. Thus, surfaes in Figure

2 belong in order to lasses (0, 0, 0) for (a), (1, 0, 0) for (b), (0, 0, 1) for (c) and
(0, 1, 0) for (e). Surfae (d) belongs to none as it is a losed surfae, and as

suh annot be applied the theorem we onsider.

The surfaes from Figure 2 are atually very useful. Generally, in mathematis,

it is often onvenient for any lassi�ation theorem to exhibit a anonial (or

normal element) for eah lass, a representative element of this lass. For this

theorem, following Gri�ths [29℄, we use only sewn panels to build the normal

surfaes, whih we all plans. Thus, the plan for lass (p,q,r), denoted Pp,q,r,

is built by:

• starting with a dis (a simple panel with a boundary);

• sewing p rings to its boundary (thus adding p puntures);

• sewing q puntured tori to the outer boundary (the tori are sewn along part

of their punture, thus adding q handles);

• sewing r M÷bius strips to the boundary (thus adding r twists).

Figure 3 shows the normal surfae P1,1,1 for lass (1, 1, 1), a surfae with two

a b c d

Fig. 3. Surfae P1,1,1

boundaries (the outer boundary and a punture), one handle and one twist

(with simpli�ed drawings). Thus, part (i) of the lassi�ation theorem states

that any open surfae is homeomorphi to a surfae like that in Figure 3, with

r ≤ 2.

To reover losed surfaes, it is enough to glue lids along the boundaries:

• the unique dis is losed into a sphere;

• the p rings beome p diss;

• the q tori beome q handles;

• if r = 1, the unique M÷bius strip beomes one ross-ap (or projetive
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plane), else (r = 2) the two M÷bius strips are glued together into one Klein

bottle.

So, the result omplies with the lassi�ation theorem for losed surfaes

[37,23,46,26℄.

4 Generalized maps

4.1 Basi de�nitions and properties

Generalized maps (gmaps, in short) are a ombinatorial model that may be

used to represent the topology of manifolds. Gmaps are most importantly har-

aterized by their dimension, whih is also the dimension of the manifolds that

they an represent. Gmaps of dimension −1, or −1-gmaps, represent isolated

verties, 0-gmaps isolated edges, 1-gmaps simple urves, 2-gmaps surfaes,

3-gmaps volumes, et.

A gmap is a olletion of basi abstrat elements alled darts, intuitively half-

edges, that are onneted by involutions αk, k being a dimension, in order to

form ells. We denote the (in�nite) type of darts by dart. While they are a

ompletely abstrat type in our spei�ation, darts are usually implemented

as integers or pointers. Although our Coq spei�ation enompasses all di-

mensions, we fous here on 2-gmaps in order to make de�nitions simpler. A

ommon mathematial de�nition of suh an objet is the following

De�nition 2 A generalized map of dimension 2, or 2-gmap, is a quadruplet

(D,α0, α1, α2), where D is a �nite subset of dart and where the αk are invo-

lutions on D, suh that α0 and α1 have no �xpoint and that α0 ◦α2 is also an

involution.

Thus, with D ⊂ dart, D �nite and α0, α1, α2 : D → D, M = (D,α0, α1, α2)
is a 2-gmap if:

• ∀x ∈ D, ∀k ≤ 2, α2
k(x) = x;

• ∀x ∈ D, ∀k ≤ 1, αk(x) 6= x;
• ∀x ∈ D, (α0 ◦ α2)

2(x) = x.

A dart x is said to be sewn at dimension k, or k-sewn, to dart y if αk(x) = y.
In this ase, as the αk are involutive, y is k-sewn to x as well. Dart y is also

said to be the k-neighbor of dart x if αk(x) = y. Eah of the αk has a di�erent

purpose: α0 is used to make up edges, α1 simple urves, and α2 surfaes. In

general, for any given k, αk is used to make up ells of dimension k.
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The onditions imposed on the αk enfore the onsisteny and ompleteness

of ells: involutivity of the αk guarantees that eah dart has exatly one k-
neighbor for eah k. The lak of �xpoints for α0 and α1 prevents the presene

of dangling darts. As we will see later, �xpoints of α2 are the darts that belong

to a boundary. Finally, foring α0◦α2 to be involutive ensures that whenever a

dart is 2-sewn to another, their respetive 0-neighbors are also 2-sewn. Thus,
only whole edges are 2-sewn.

Figure 4 shows the standard representation for darts and sewings (Left),

yx

x

x

α x = y2

α x = y0

α x = y1
yx

y

Fig. 4. Standard graphi representation of

darts, sample 2-gmap

as well as a sample 2-gmap subdividing a prism with a triangular base and

laking the front fae (Right). In this �gure, x and y are darts. A dart pitured

without k-neighbor is impliitely k-sewn to itself.

4.2 Cells and invariants

With the above de�nitions, we an introdue usual notions of topology, most

of them being desribed as orbits:

De�nition 3 Let D be a set and f1, f2, . . . , fn funtions on D. For any x ∈
D, the orbit of f1, f2, . . . , fn at x is de�ned to be the smallest subset of D
ontaining x and stable by all funtions fi. It is denoted < f1, f2, . . . , fn > (x).

Let M = (D,α0, α1, α2) be any 2-gmap. With orbits, onneted omponents

and ells of M are easy to de�ne:

De�nition 4 The onneted omponent of M inident to dart x ∈ D is the

2-gmap M ′ = (D′, α′

0, α
′

1, α
′

2) satisfying:

• D′ =< α0, α1, α2 > (x);
• ∀k | 0 ≤ k ≤ 2, α′

k is the restrition of αk to D′
.
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De�nition 5 For any x ∈ D and any i, j, k ≤ 2 pairwise distint, we all

orbit < αi, αj > (x) the k-ell of M inident to x. A 0-ell is also alled a

vertex, a 1-ell an edge and a 2-ell a fae. We de�ne the map of k-ells of M
to be the algebrai struture regrouping all the k-ells of M , obtained from M
by ripping all its k-sewings. It is denoted Mk.

De�nition 6 For any x ∈ D and any k ≤ 2 we all orbit < α0, α1, . . . , αk−1 >
(x) the simple k-ell of M inident to x. Like we did for ells, we de�ne the

map of simple k-ells as the algebrai struture regrouping all the simple k-ells
of M . It is denoted MS

k . A simple ell of dimension 0, 1 and 2 is respetively

a single dart, an open edge and a yle of alternately 0- and 1-sewn darts.

In this de�nition, M2 is a 2-gmap where every dart is an α2-�xpoint, M0

and M1 are two 1-gmap (with 2 involutions) when α0 and α1, whih may have

�xpoints, are renumbered onveniently. Atually, MS
0 and MS

1 are respetively

a 0-gmap and a 1-gmap. Also note thatM2 = MS
2 . Figure 5 shows an example

M0

M1

M0
S

M1
S

δ(M)

M

M2=M2
S

obvious embedding for M other embedding for M

Fig. 5. An example of a 2-gmap and its

maps of ells, 2-gmap of boundaries

and standard embedding

2-gmap as well as its maps of ells. In this example, M has two onneted

omponents. The 2-gmap δ(M) is the 2-gmap of boundaries of M : its darts
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are the darts of M that are inident to a boundary, eah of them being 1-
sewn in δ(M) to its boundary-neighbor in M , the notions of boundary and

boundary neighborhood being de�ned as:

De�nition 7 A dart x ∈ D is said to be inident to a boundary of M if

α2(x) = x. A dart inident to a boundary is alled external, it is alled internal

otherwise.

De�nition 8 A gmap without boundary is said to be losed, and open other-

wise. An edge whose darts are sewn to themselves is said to be open (it has

2 darts), and losed otherwise (it has 4 darts). A vertex ontaining a dart

inident to a boundary is said to be open, and losed otherwise.

De�nition 9 For any dart x, dart yk = (α2 ◦α1)
k(x) is alled the boundary-

neighbor of x if k is the smallest natural number suh that yk is inident

to a boundary (i.e. α2(yk) = yk) and yk 6= x. All the external darts have a

boundary-neighbor, what is not neessarily the ase for the other darts.

De�nition 10 A path is a �nite sequene of dimensions. Following a path

n0, n1, . . . , nk from dart x yields dart αnk
◦ · · · ◦ αn1

◦ αn0
(x).

Now that we have de�ned darts, verties, edges, faes and onneted ompo-

nents of a 2-gmap, we note their respetive numbers by d, v, e, f and c.

When the gmap is onneted, i.e. c = 1, it represents the topology of a sur-

fae subdivision, and, onversely, the topology of any surfae subdivision is

represented by a onneted gmap. Then, we an ompute the Euler-Poinaré

harateristi χ of the underlying surfae by the famous formula (slightly gen-

eralized):

χ = v + e+ f − d.

Let us go bak to the former harateristis, (p, q, r), in order to better under-

stand them. Fistly, p is about one unity the number of boundaries b. Seondly,
when it is redued to 0, 1 or 2, r is alled the orientability fator of the surfae.
Thirdly, in this ase, q is another lassial topologial invariant of the surfae
whih is alled its genus. It an be interpreted either as the number of handles,

sometimes alled tunnels, of the surfae, or as the greatest number of (losed)

Jordan urves that an be drawn on the surfae without disonneting it. Note

that the tunnels must not be onfused with holes or puntures.

These numbers are linked by well-known formulae [33℄:

b = p+ 1,

q = 1− (r + b+ χ)/2.
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Thus (r+ b+χ) is neessarily even, and, q being a natural number, we always

have:

r + b+ χ ≤ 2.

Finally, in [33,34℄, it is shown how all these surfae harateristis an be

omputed from a orresponding 2-gmap, whih is implemented in Topo�l [3℄.

4.3 Embedding and onservative operations

The omplete link between subdivisions like 2-gmaps and atual surfaes is

provided by the notion of embedding, i.e. the projetion of topologial objets

into a representation spae. We are interested here in ontinuous embeddings,

embeddings that have �good properties� whih make them intuitively valid.

For instane, all darts from the same topologial vertex must be embedded

into the same geometrial vertex. Similarly, all darts from the same topologial

edge must be embedded into the same geometri edge and all darts from the

same topologial fae must be embedded into the same geometri fae. Inident

topologial objets must be embedded into inident geometrial objets.

Briant and Singerman [6℄, and Lienhardt [35℄, have shown that gmaps (with

all the above onstraints) exatly model all the subdivisions of ompat sur-

faes, open or losed, orientable or not. However, as we had deided to fous

on ombinatorial aspets, we did not formally speify embeddings, as it would

have required extensive algebra, ontinuous topology and geometry develop-

ments, probably making the spei�ation at least twie as large. But, forgoing

embeddings has a dramati onsequene. Indeed, the theorem of lassi�ation

of surfaes applies to surfaes, i.e. embedded topologial objets, while all we

have available is a model of the topology of surfaes. Thus, the theorem annot

be diretly expressed in our spei�ation. The �rst step in dealing with this

theorem was to �nd a way to adapt the theorem to the ombinatorial topology

world.

Our solution was to introdue what we alled onservative operations, simple,

loal operations that, when applied to a suitable 2-gmap, are strongly believed

not to alter the set of surfaes that this 2-gmap subdivides. Proving so would

require speifying embeddings. We stress that while onservative operations

were inspired by loal surfae deformations, they only deal with subdivisions

and not surfaes. These operations are listed in Set. 6. This allows us to

lassify subdivisions: two 2-gmaps are onsidered topologially equivalent if

one an be obtained from the other by applying onservative operations. Thus,

two 2-gmaps are equivalent only if they subdivide the same surfaes. Then,

we proved the �rst part of the following full theorem of lassi�ation:

Theorem 11 (i) Any open 2-gmap is topologially equivalent to a 2-gmap
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Np,q,r that subdivides one of the Pp,q,r surfaes, with r ≤ 2.
(ii) When r ≤ 2, r′ ≤ 2 and (p, q, r) 6= (p′, q′, r′), Np,q,r and Np′,q′,r′ are not

topologially equivalent.

Thus, we shifted from a lassi�ation of surfaes to an analoguous lassi�-

ation of subdivisions, for whih we proved part (i). In order to get bak to

surfaes, we need to make the following fundamental lassial hypothesis:

Hypothesis. Two surfaes that are subdivided by the same 2-gmap

are homeomorphi.

Indeed, for any surfae S there is (by our de�nition of surfaes) a 2-
gmap M that subdivides it. Aording to the theorem, M also subdivides one

of the Pp,q,r. Beause of the hypothesis, S is homeomorphi to Pp,q,r. Thus

any surfae S is homeomorphi to one of the Pp,q,r, whih proves part (i) of

the theorem of lassi�ation of surfaes. Were the hypothesis not to hold, we

would be left with a (still interesting) theorem of lassi�ation of subdivisions

aording to what they an subdivide.

5 Coq spei�ation

Now that we have introdued the mathematial notions that appear in our

work, let us see how they are expressed in Gallina, Coq's spei�ation language

that allows to write terms of the Calulus of Indutive Construtions

1
.

5.1 Binary relations

Binary relations are only used to model the αk, but, in order to be as modular

as possible, they are spei�ed separately. Atually, this spei�ation of rela-

tions is an extension of [42℄ [44℄. It an only deal with relations on objets of

the same type.

Binary relations may be seen as two-plae prediates. Thus, in Gallina, we

speify the type of binary relations on a type as an alias for the type of two-

plae prediates on this type, with ommand Definition.

DEFINITION 1 (BINARY RELATION) : Let E be a set. A binary relation on

E is a two-plae prediate on E, i.e. a funtion that assoiates a proposition

to any two elements of E:

1
We used the Coq version 7, the syntax has evolved in later versions
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Definition relation : Set → Type

:= λE:Set E → E → Prop

As evidened by the λ, the Gallina syntax is quite lose to that of funtional

languages suh as ML, Caml or Haskell. We have slightly simpli�ed this lan-

guage here by adding usual mathematial symbols in order to make terms

more readable to neophytes.

This ommand delares symbol relation as an abbreviation for higher-order

lambda-term λE:Set E → E → Prop. The notation x:T is a type judgement

meaning �term x is of type T �.

Prop is the builtin type for propositions. Propositions are not booleans;

booleans are a two-value onrete type whose values are often assoiated to

propositions aording to their truth or falsehood. Symbol → is (from an in-

tuitive point of view) overloaded, it represents both the onnetor to build

funtion types and logial impliation. Builtin type Set is that of onrete

types, the types of objets that we want to build and use, suh as numbers,

lists, maps, darts, et. Builtin Type is the type of Set , of Prop , and of

funtions into either of these types.

The de�nition expliitly states that the type of relation is Set → Type,

the type of funtions from Set into Type. Thus, an objet of type

relation is a funtion that, when applied to a onrete type E (the type

itself, not an objet of this type), yields the type E → E → Prop of two-

plae prediate on E .

For instane, nat being the prede�ned type for natural numbers, relation

nat is a shortut for the redex λE:Set E → E → Prop nat, whih β-
redues to nat → nat → Prop, the type of binary prediates on nat .

Usual properties of relations are also spei�ed with the de�nition mehanism:

DEFINITION 2 (INJECTIVITY) : Let E be a set and R a relation on E.

R is injetive if equality of images by R implies (syntatial) equality of

arguments:

Definition injetive : (∀E:Set) (relation E) → Prop

:= λE:Set λR:(relation E)

(∀x,x',y:E) (R x y) → (R x' y) → x=x'.

DEFINITION 3 (INVOLUTIVITY) : Let E be a set and R a relation on E. R

is involutive if for any element, an image of an image of this element is the

element itself:

Definition involutive : (∀E:Set) (relation E) → Prop

:= λE:Set λR:(relation E)

(∀x,x',y:E) (R x y) → (R y x') → x=x'.
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In Coq, the usual ordering on natural numbers is named lt, its type is nat

→ nat → Prop. Aording to our de�nitions, the injetivity of lt should

be represented by term (injetive nat lt). However, notie that nat is

redundant: indeed, the �rst argument of injetive is the type on whih its

seond argument is a relation. Thus, as lt is a relation on natural numbers,

the only possible �rst argument of injetive is nat (or any equivalent

type). Coq is able to infer this kind of redundant type arguments if asked to.

With this faility, (injetive lt) beomes a valid term. Be aware that all

our further de�nitions use this faility.

In the same way, we de�ne funtionality (funtional), irre�exivity

(irreflexive), the proprety of being the identity (idential), as well as

the omposition of two binary relations (omposition, of type (∀E:Set)
(relation E) → (relation E) → (relation E) ), partial surjetivity

(surjetive), the property of being a permutation (permutation) on a sub-

set of E, and the property of being an involution (involution).

5.2 Darts

Little is said about darts in our previous setions, exept that their type is

dart. Thus, we delare them as an abstrat type, in order to remain as

generi as possible.

PARAMETER 1 (DART) : there exists a type of darts alled dart:

Parameter dart : Set.

This delaration adds a new objet, dart of type Set , into the envi-

ronment. This di�ers from a De�nition ommand, whih simply reates an

abbreviation to an already existing term. This delaration does not say muh

about dart. For our proofs, we need to make two assumptions on dart :

• Darts may be ompared. More preisely, equality of darts should be deidable,

i.e. given any two darts, we must assume that there is a way to �nd out

whether they are equal or not. This is not the ase for any imaginable set of

darts, for instane if darts were represented by formulae over reals that use

exponents: there is no algorithm that allows to hek whether two formulae

orrespond to the same one real number.

This assumption is neessary, as the CIC, being a onstrutive logi, does

not allow reasoning by ases if not provided with a method to determine

the relevant ases. Thus, in order to have speial ases in our proofs when

two darts are equal, we must assume that we are able to test their equality.

This is an axiom of our spei�ation:

DEFINITION 2 (DECIDABILITY OF DART EQUALITY) :

Axiom EQ_DART_DEC : (∀x,y:dart) x=y∨¬x=y
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• There are always unused darts available. We will regularly need fresh darts in

our algorithms, so we must assume that there is an in�nite number of them,

as well as have a way to referene them. To do so, we assume that there

is an injetion idg (for injetive dart generator) from natural numbers

into dart, thus ensuring that there is at least as many darts as there are

naturals:

PARAMETER 3 (DART GENERATOR) :

Parameter idg : nat → dart.

DEFINITION 4 (INJECTIVITY OF idg) :

Axiom IDG_INJ : (∀n,n':nat) (idg n)=(idg n') → n=n'

5.3 Sewings

A sewing is a triplet made of a natural number (the dimension of the sewing,

not bounded by 2 in the beginning) and the two darts that are sewn:

DEFINITION 4 (SEWINGS) :

Indutive sw : Set :=  : nat → dart → dart → sw.

The type of sewings sw is de�ned as an indutive type, i.e. the smallest type

that ontains all the terms that an be built using only its onstrutors. Type

sw only has a single onstrutor, a three-argument funtion that takes one

nat and two darts to reate a sewing. Thus, if for instane s, t and u

are darts, then ( 0 s t), ( 3 s u), ( 2 u u) and ( 2 t s) are four

sewings. Construtors are assumed to be distint and injetive, thus those four

sewings are distint as the arguments of  are distint (unless s=t=u, in whih

ase the last two sewings are equal). The fat that a sewing an be built only

using  is exploited by our �rst lemma:

LEMMA 1 (INVERSION OF SEWINGS) : any sewing is an image of :

Lemma SW_INV : (∀s:sw)
(∃n:nat |(∃x,y:dart | s=( n x y)))

This kind of lemma an be linked to the elementary seletors for a type in

a traditional programming language. They will be used to manipulate sw

while building proofs of propositions related to sewings.

5.4 Free maps

Free maps are the simplest type we use to represent gmaps. A free map is

simply a �nite olletion of darts and sewings, de�ned muh like an ML list:
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DEFINITION 5 (FREE MAP) :

Indutive fmap : Set :=

v : fmap

| i : dart → fmap → fmap

| l : sw → fmap → fmap

This is an indutive type de�nition, whih means that the type of free maps

is the smallest type of terms that an be built with onstrutors v, i and

l. In other words, a free map is either the empty map v, a pair preeded

by i of a dart and a free map (intuitively the insertion of a dart into a free

map), or a pair preeded by l of a sewing and a free map (intuitively the

addition of a sewing into the map). When an indutive type is de�ned, Coq

automatially generates a strutural indution sheme for it. Here, it allows

to prove properties on free maps by showing that they are true for the empty

map v and stable by dart insertion with i and sewing insertion with l. Most

proofs on fmap use this priniple.

We an then de�ne two basi seletors as prediates on fmap, using a similar

indutive onstrution:

DEFINITION 6 (SUCCESSORS) : Let k be a dimension, x and y two darts

and m a free map. Dart y is a k-suessor of x in map (l ( k x y) m);

this property is stable by dart and sewing insertions:

Indutive su : nat → fmap → dart → dart → Prop

:= SUCC_L_X : (∀k:nat; ∀m:fmap; ∀x,y:dart)
(su k (l ( k x y) m) x y)

| SUCC_I : (∀k:nat; ∀m:fmap; ∀x,y:dart) (∀d:dart)
(su k m x y)

→ (su k (i d m) x y)

| SUCC_L : (∀k:nat; ∀m:fmap; ∀x,y:dart) (∀s:sw)
(su k m x y)

→ (su k (l s m) x y)

The other seletor is exd, of type dart → fmap → Prop, whih desribes

the existene of a dart in a free map. An important variation on su, the

term of whih is too long to print here, is the following:

DEFINITION 7 (ALPHA) : (alpha n x m) is either a k-suessor of x, or x

itself if there is none:

Definition alpha : nat → dart → fmap → dart := ...

Its main purpose is to turn the prediate-based de�nition of suession into

an easier-to-use funtional one. Provided that a free map satis�es all the on-

straints given in the de�nition of gmaps, alpha has the same properties as

the αk. A number of other things related to free maps are also de�ned, in-

luding all the notions given in the previous setion (boundaries, ells, paths),
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but also an observational equality relation. Being de�ned like lists, free maps

are inidentally ordered. But this order is arti�ial, as equality between free

maps should be determined only by the darts and sewings in eah map, not

the order in whih they were added, whih is unavoidably taken into aount

by the builtin Coq equality, sine it is only the syntatial equality between

terms of the same type. Thus we introdue our own equality:

DEFINITION 8 (OBSERVATIONAL EQUALITY ON FREE MAPS) : two free

maps are observationally equal if the behaviour of alpha and exd is the

same on both maps

Definition

∼= : fmap → fmap → Prop :=

λm,m':fmap
((∀x:dart) (exd x m) ↔ (exd x m'))

∧ ((∀k:nat; ∀x:dart)
(alpha k x m)=(alpha k x m'))

The de�nition of gmaps using free maps is heavily underonstrained, whih

allows many situations forbidden by the de�nition of gmaps. A dart may be

sewn at any dimension to any dart, inluding itself or darts not previously

inserted into the map, or to several darts at the same dimension. In order to

apture preisely generalized maps, we need to introdue a new type, gmap.

5.5 Generalized maps

An objet m of type gmap is basially a free map that has been proved to

be well-formed, i.e. to be satisfying the fundamental properties used in the

de�nition of generalized maps of dimension 2 given in the previous setion.

The most natural approah in Gallina is to de�ne gmap as the type of

pairs of a free map (alled the support) and a formal proof that the free map

satis�es a well-formedness prediate that expresses said fundamental properties

of 2-gmaps. This is a dependent pair, as the seond element is a proof of a

proposition parametrized by the �rst element. The well-formedness prediate

is de�ned as:

DEFINITION 9 (WELL-FORMEDNESS OF FREE MAPS) : a free map m is

well-formed if, for any k, relation (su k m) is an involution, if for any

k≤1 relation (su k m) is irre�exive, if relation (su 0 m)◦(su 2 m)

is involutive, and if for any k suh that k≥3 relation (su k m) is the

identity:

Definition wf : fmap → Prop

:= λm:fmap
((∀k:nat) (involution (su k) m))

∧ ((∀k:nat) k<=1 → (irreflexive (su k m)))
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∧ (involutive (omposition

(su 0 m) (su 2 m)))

∧ ((∀k:nat) 3<=k → (idential (su k m)))

The last ondition is added to e�etively limit the number of relevant αk

relations to k = 0, 1 or 2: at higher dimensions, all darts are onsidered to be

sewn to themselves. Thus, the type of 2-gmaps is:

DEFINITION 10 (GMAP) : an objet of type gmap is a pair made up of a

free map m and a proof that m is well-formed, i.e. a term of type (wf m) :

Indutive gmap : Set

:= mkg : (∀m:fmap; ∀w:(wf m)) gmap

Also spei�ed is a seletor to get the �rst element of the pair, alled gsupport:

gmap → fmap.

Now we have a type that, by onstrution, exatly enompasses 2-gmaps.

However, this type is harder to handle than free maps when proving theorems,

as there is no (useful) strutural indution sheme on this type; being deprived

of indution really hurts, so we had to �nd some kind of indution sheme

ourselves. To do so, we used another ommon de�nition of generalized maps.

5.6 Sewn-ell maps

Generalized maps are often de�ned in a reursive and inremental manner,

using a simple-ell-sewing operation that we note sm, of type nat → fmap

→ dart → dart → fmap [33℄ [34℄. The integer is the dimension of the

sewings, and the dimension of the a�eted simple ells plus 1. For instane

(sm 2 m x y) 2-sews eah dart of free map m in the simple 1-ell inident to

x to the orresponding dart in the simple 1-ell inident y. More preisely, x

is sewn to y, and any dart x' in the simple 1-ell inident to x is sewn to the

dart obtained by following from y one of the paths that lead from x to x'.

Figure 6 shows what sm does on simple examples.

Free maps built using only sm are said to be well-onstruted. More preisely,

a well-onstruted map is built by:

• starting with the empty map;

• adding all the darts;

• making all 0-sewings with sm;

• making all 1-sewings with sm;

• making all 2-sewings with sm.

Well-onstrutedness is expressed in a prediate. The type of sewn-ell maps is
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Fig. 6. Simple ell sewing at dim. 0,1,2,3

alled smap . Like gmap , smap is the set of pairs omposed of a support

free map and a proof term of well-onstrutedness of the support.

The main advantage of smap is that suh a map is built in an inremental

manner, whih allowed us to prove a useful indution sheme for this type.

It roughly states that if a property is true for a map without sewings and is

preserved by sm, then it is true for any smap.

Our atual Coq spei�ation is more general than what is shown here, in that

well-formedness and well-onstrutedness are parametrized by a dimension,

allowing us to work with gmaps of any dimension. Our �rst major result

in this spei�ation is that any gmap support is observationally equal to

a smap support (at any dimension), whih means that well-onstrutedness

amounts to well-formedness, order of insertions and sewings aside. Thus, we

have formally proved that the two usual de�nitions of generalized maps are

indeed equivalent.

From a pratial point of view, it allows us to swith between the gmap types

at will while proving a property, provided it is preserved by observational

equality, whih is the ase for all geometrially meaningful properties. The

main onsequene is that we now an indiretly reason by strutural indution

on gmap , by swithing to and then bak from smap.

6 Conservative operations

From now on, we fous on surfaes and 2-gmaps. As we explained in Set.

3, onservative operations are at the ore of our proof of the lassi�ation

theorem. Being onservative means that they are expeted to preserve the set

of subdivided surfaes. In order to maximize on�dene in the onservativity
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of these operations, they are kept as simple, loal and onstrained as possible.

Building operations on types gmap and smap are very hard to diretly

speify: they must turn a dependent pair into another pair, whih in part on-

sists in turning a proof term into another proof term, something that is quite

di�ult to perform diretly. The tehnique we use is to speify the e�et of

an operation at the simple free map level, then prove a lemma stating that,

provided preonditions are satis�ed, the operation preserves well-formedness

(resp. well-onstrutedness). The free map operation and lemma are then om-

bined to form an operation on gmap or smap. Atually, the possibility of

using this method to easily build operations on omplex types was our main

motivation behind the fmap type.

6.1 Strething of an open vertex stro

We de�ne an open vertex as a vertex inident to a boundary. The strething

operation splits suh a vertex into two verties onneted by an open edge (see

Figure 7). We start by giving the operation in the fmap universe. It makes

y
x

z

x
y

z newy newx

newx newy

x
y

z

stro M x newx newy

stro M y newx newy

Fig. 7. Example of strething of a vertex

with an open edge

use of unsm, the reverse of sm.

DEFINITION 11 (STRETCHING A VERTEX WITH AN OPEN VERTEX) :

let m be a free map and x, newx and newy three darts. This funtion rips

the sewings of x at dimension 1, then adds an edge made up of newx and

newy, then 1-sews newy to (alpha 1 x m) and newx to x

Definition stro : fmap → dart → dart → dart → fmap

λm:fmap λx,newx,newy:dart
(sm 1 (sm 1 (sm 0 (i newx (i newy (unsm 1 m x)))

newx newy) newy (alpha 1 x m)) newx x).
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The preonditions have two purposes: to ensure �rst the preservation of well-

formedness by the operation, and seond the onservativity of the operation,

by verifying that the operation is only used to do what it is intuitively supposed

to. A preondition is expressed in one prediate.

DEFINITION 12 (PRECONDITION FOR STRETCHING OF AN OPEN VER-

TEX) : let m be a free map and x, newx and newy three darts. These pa-

rameters may be used for open vertex strething if m is of dimension 2, if

x belongs to m and is inident to an open vertex, and if newx and newy are

distint and do not belong to m:

Definition pre_stro: gmap → dart → dart → dart → Prop

:= λm:gmap λx,newx,newy:dart
(exd x m) ∧ ¬(exd newx m) ∧ ¬(exd newy m)

∧ newx 6= newy ∧ (openvertex m x)

Note that the �rst argument, of type gmap, is used with prediate exd,

whih expets type fmap. The typing problem is avoided beause, using

the oerion faility, we previously told Coq to automatially ast gmap into

fmap when needed using gsupport (Set. 5.5). Thus, in this formula, (exd

x m) impliitly stands for (exd x (gsupport m)). This allows us to use free

map operations on gmap in a very natural way. In the same way, smap is

impliitly ast into gmap, and by transitivity into fmap, so we an apply

gmap and fmap operations to smap. We an now prove with Coq that

this prediate ensures preservation of well-formedness:

LEMMA 2 (PRESERVATION OF WELL-FORMEDNESS WITH STRO) : if

pre_stro is satis�ed for a set of arguments, using them for a strething

preserves well-formedness:

Lemma WF_STRO : (∀m:gmap; ∀x,newx,newy:dart)
(pre_stro m x newx newy)

→ (wf 3 (stro m x newx newy))

For spae onerns, it is absolutely impossible for us to present here a formal

proof of any theorem, as they are either far too long if given in full detail, or

impossible to follow if abridged.

As a CIC lemma is atually a funtion that transforms proof terms of the

hypotheses into a proof term of the onlusion, we use the above lemma to

build a gmap from another gmap, thus obtaining a version of stro that

yields a gmap. Note that Coq automatially infers the �rst element of the

pair from the seond, whih is thus the only one to provide:

DEFINITION 13 (STRETCHING AN OPEN VERTEX IN A GMAP) : if

pre_stro is satis�ed for a set of arguments, the lemma WF_STRO is used

to build a gmap pair orresponding to the result of strething:

Definition gstro : λm:gmap λx,newx,newy:dart
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(pre_stro m x newx newy) → gmap

:= λm:gmap λx,newx,newy:dart
λp:(pre_stro m x newx newy) (mkg (WF_STRO p))

This is a little tehnial, and might be di�ult to understand for readers not

austomed to this formalism. The point was simply to show how a lemma

an be used to build a onrete objet.

All other onservative operations are built with the same method: de�ne

the operation on fmap, put all preonditions into a prediate, prove the

preservation of well-formedness and use this proof to extend the operation to

gmap.

6.2 Removal of an open edge

This is the onverse of stro (and as suh is not pitured): it removes unneeded

edges from boundaries. The preondition ensures that the edge itself is open

and that there is another edge on its boundary, so that removing this edge

will not remove the entire boundary.

6.3 Sliding along a boundary

This applies to plaes in the map where a setion of the boundary has been

onneted to another edge by 2-sewing that edge to one of the edges of the

boundary. This operation simply sews one of the edges right next to it instead,

intuitively sliding the 2-sewing along the boundary setions (see Figure 8,

where x is a dart of the edge that loses its 2-sewings in the proess).

The preondition states that verties on either side of the onneting edge

should be open, and that both sides of the boundary setion ontain at least

two darts, in order to make sure that no boundary gets suppressed in the

proess and that the on�guration is really that of the �gure.

6.4 Merging two faes

This operation merges two distint faes that have at least one ommon edge

by removing that edge and onneting what is left (see Figure 9, where x is

a dart of the removed edge).

The preondition ensures that the two faes are indeed distint and that both
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x
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Fig. 8. Example of sliding

x

Fig. 9. Example of merging

of them ontain more than one edge (one-edged faes do not have anything

left to onnet).

6.5 Absorption of a one-edge fae

This operation is the previous one in the ase where one (and only one) of

the faes is made of a single edge. In that ase, the fae is simply removed, or

absorbed, by the larger fae (see Figure 10, whih also shows bump removal,

x

x’

Fig. 10. Example of absorption and bump re-

moval

and where x is a dart of the one-edged fae).
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The preondition ensures that the two faes are distint, that one of them has

a single edge and that the other has more.

6.6 Bump removal

This operation removes a bump, i.e. an edge losed on itself, whih has no

atual relevane from a topologial point of view (see Figure 10, where x′
is a

dart of the bump). There are no additional preondition.

6.7 Dart renaming

That is the only global operation: it hanges the name of all the darts in

the map using a renaming funtion of type dart → dart. At some point,

the darts we manipulate will need to bear imposed names to be onform to

a normalization. This funtion must be injetive on the set of darts of the

original map, otherwise some darts will be onfused in the resulting map.

6.8 Slitting a vertex

The slitting operation removes extraneous 2-sewings. It rips the 2-sewings

that tie together the two sides of a losed edge the end verties of whih are

respetively open and losed (see Figure 11, where x belongs to the opened

x
x

Fig. 11. Example of slitting

edge).

The preondition simply heks that one of the end verties is open and the

other losed.
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7 Normal maps and the trading theorem

7.1 Normal maps

Now that we have the onservative operations, we know preisely our topo-

logial equivalene relation between 2-gmaps. Remember that two 2-gmaps

are topologially equivalent provided one an be obtained from the other using

only a ombination of any of the eight onservative operations while always

satisfying the preonditions. Topologially equivalent 2-gmaps subdivide the

same surfaes.

The next step is to prove that any open onneted 2-gmap is equivalent to one

of the normal maps Np,q,r. Now we need to preisely desribe these maps. To

�nd a good andidate for Np,q,r, we start with a map that obviously subdivides

a surfae with p puntures, q handles and r twists. Then we apply as many

onservative operations as possible to it so that it beomes as small as possible,

making it easier to handle. In the end, we obtain the map on Figure 12. This

0
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0e
3

0e
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0e
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0e

1
b q−1

2
b q−1

6
b q−1

7
b q−1

0
b q−1

1
t r−1

2
t r−1

3
t r−1

0
t r−1

0
o

1
o

3
b q−1

4
b q−1

5
b q−1

0 p−2 p−1 0 q−1 0 1 2 r−1
r twisted earsq bridgesp ears

Fig. 12. General form of a normal map

map is made of one open edge (the horizontal upper edge on the �gure) that

represents the mandatory boundary of the map. Then, from left to right,

there are p vial-shaped ear patterns (one for eah punture), q larger bridge

patterns (one for eah handle) and r twisted ear patterns (one for eah twist).

The names of the patterns are inspired by Gri�ths [29℄.

A normal map is made of a single yle of alternately 0- and 1-sewn darts,

some of whih have been 2-sewn to form the patterns. Eah ear pattern is

made of 6 onseutive darts. The darts of the k-th ear pattern are denoted eki ,
with i between 0 and 5, aording to the order they appear on the yle. This

means that in ear pattern k, ek0 and ek5 are 2-sewn, as well as ek1 and ek4, and
ek2 and ek3 are both 2-sewn to themselves.

In the same way, the 8 darts that make up bridge k are denoted bki , with i
between 0 and 7, and the 4 darts that make up twisted ear k are denoted tki ,
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with i between 0 and 3. The two darts that form the mandatory boundary are

denoted o0 and o1. Thus, map Np,q,r ontains 2 + 6p+ 8q + 4r darts.

7.2 Normal maps in Coq

Normal maps are entirely haraterized by p, q and r. Thus, in Coq, we should

be able to build a normal map, of type smap , using only the three natural

numbers. The darts in normal maps will be obtained using the idg dart gen-

erator. Thus, dart o0 and o1 are atually (idg 0) and (idg 1), eki is (idg

(2+6k+i)), bki is (idg (2+6p+8k+i)), and tki is (idg (2+6p+8q+4r+i)).

To build the map, we write reursive Coq funtions that deal with one step of

the onstrution proess of a normal map:

• (dartmap n) yields a the 0- smap only ontaining the darts (idg 0) to

(idg (n-1));

• (edgemap n) yields the 1- smap made by taking (dartmap 2n) and 0-

sewing every (idg 2k) dart to (idg (2k+1)). This is a olletion of n

edges;

• (yle n) yields the 2- smap made by taking (edgemap n) and 1-sewing

every (idg (2k+1)) to (idg (2k+2)), with a speial ase with (idg

(2n-1)) that is instead 1-sewn to (idg 0). Thus, we obtain a yle of

alternately 0- and 1-sewn darts;

• (addears p q r) yields (yle (1+3p+4q+2r)) in whih the edge inident

to ek0 is 2-sewn to ek5 using sm, for eah k under p. This takes are of the

ear patterns;

• (addbridges p q r) yields (addears p q r) in whih the edge inident

to bk0 is 2-sewn to bk5, and the edge inident to bk2 is 2-sewn to bk7, for eah k

under q. This takes are of the bridge patterns;

• (makenmap p q r) yields (addbridges p q r) in whih the edge inident

to tk0 is 2-sewn to tk1, for eah k under r. This takes are of the twisted ear

patterns, thus ompleting the normal map.

The normal maps are indeed determined only using the numbers p, q and r.
Thus, in our Coq spei�ation, the type nmap of normal maps is simply

the type of triplets of natural numbers, with seletors named nmp, nmq and

nmr. We then use the oerion faility to automatially ast suh triplets into

smap when needed using funtion makenmap. Thus, we an transparently

use nmap objets as free maps.
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7.3 The trading theorem

As we mentioned in the introdution, part (i) of the lassi�ation theorem is

split again into two parts. The �rst half (the normalization theorem) states

that any map belongs to one of the lasses (p, q, r), the seond half (the trading

theorem) identi�es all lasses to lasses with r ≤ 2. We �rst deal with the latter,

whih is muh simpler. In our spei�ation, the trading theorem states that:

Theorem 12 Normal map Np,q,r is equivalent to Np,q+1,r−2 if r > 2.

Thus, this theorem atually allows to trade two twists in a normal map for

an additional handle, provided there were at least three twists in the original

map.

Our proof is very straightforward, it is in fat similar to the one in [25℄. It

simply onsists in applying 10 onservative operations to Np,q,r and proving

that the result is Np,q+1,r−2. The operations are the following, with new darts

alled i0, i1, i2 and i3:

(1) streth the vertex inident to t23 with an open edge made of i0 and i1;
(2) slide the 2-sewing of t03;
(3) streth the vertex inident to t21 with an open edge made of i2 and i3;
(4) slide the 2-sewing of t01;
(5) slide the 2-sewing of t13;
(6) slide the 2-sewing of t23;
(7) slide the 2-sewing of t03;
(8) remove the open edge inident to t02;
(9) remove the open edge inident to t12;
(10) rename the darts properly (as dart names in a normal map are imposed).

Figure 13 illustrates these operations. Eah sub�gure shows the result of the

operation written in the aption. A dashed line illustrates what the latest

operation did, by pointing to the new edge in ase of vertex strething, pointing

to the vertex where a removed edge stood before, or by showing the movement

of the sewing in ase of sliding. The ik are generated using idgen, a funtion

based on idg that yields darts that do not belong to any given map. All steps

are formally handled in a similar way. Let us use the �rst step as an exemple.

7.4 Step 1

There are three substeps for eah step:

28



=
0 1 2

0

1 2

(a) Two views of the starting normal

map

(b) Step 1:

streth the

vertex inident

to t
2
3

() Step 2: slide the

2-sewing of t
0
3

(d) Step 3: streth the

vertex inident to t
2
1

(e) Step 4: slide the

2-sewing of t
0
1

(f) Step 5: slide the

2-sewing of t
1
3

(g) Step 6: slide

the 2-sewing of t
2
3

(h) Step 7: slide the

2-sewing of t
0
3

(i) Step 8: remove the

edge inident to t
0
2

=

(j) Step 9: remove the edge inident to t
1
2

Fig. 13. Steps of the trading theorem

(1) prove that the map obtained after the previous step satis�es the preon-

dition for the next operation. Here, there is no previous step, so we take

the starting normal map:

LEMMA 3 (PRECONDITION FOR STEP 1 IS SATISFIED) : strething

the vertex inident to t23 with two darts that do not belong to m is

allowed in any normal map with r > 2:
Lemma pre_step1 : (∀m:nmap)
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(nmr m)>2 -> (pre_stro m x (idgen m 0) (idgen m 1))

(2) perform the operation:

DEFINITION 14 (RESULT OF STEP 1) : perform the step

Definition step1 : λm:gmap λp:((nmr m)>2)

(gstro (pre_step1 p))

(3) build a library of lemmas desribing exd's and alpha's behaviours after

appliation of step1. It will be used in the following steps.

After step 9, the map has the same struture as Np,q+1,r−2, but the darts are

named di�erently, thus we add a renaming step so that the names math.

One this tenth step is over, we prove that the resulting map is observation-

ally equal, and thus topologially equivalent, to Np,q+1,r−2. Combining all the

intermediate results, we onlude that Np,q,r is equivalent to Np,q+1,r−2, thus

ending our formal proof of the trading theorem. We would like to stress that

the whole proof was entirely heked by the Coq system.

8 The normalization theorem

8.1 Quasi-normal maps

This theorem is muh more di�ult to prove. Informally, it states:

Theorem 13 Any open onneted 2-gmap is topologially equivalent to one

of the normal maps.

Our proof is in two parts that are joined together using a new subtype of

smap, the type of quasi-normal maps.

De�nition 14 A smap m of dimension 2 is (p, q, r)-quasi-normal if:

• map Np,q,r is inluded in m, i.e. all its darts and sewings are in m, with the

exeption of the 1-sewings of o0 to α1(o0), whih is replaed here by another

1-sewing, thus onneting this normal setion of m to the rest of m;

• m has only one fae;

• all verties in m are inident to a boundary;

• m ontains no bump.

A quasi-normal map is essentially a map that �ontains� a normal map and

that also has several useful properties. A very important dart in a quasi-normal

map is what we all the limit dart, denoted ld: it is the dart that omes right

after the normal part of the qmap. Figure 14 shows one suh map and its

limit dart. Surrounded on the �gure is the non-normal part of the quasi-map.
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map

The type of quasi-maps is qmap, it is de�ned muh like previously as a

triplet of a smap, a nmap, and a proof that the smap satis�es the

above properties with the nmap as the normal setion.

The two parts of the normalization theorem are:

• the leaning theorem, that states that any open onneted 2-gmap is equiv-

alent to a quasi-normal map the normal setion of whih is N0,0,0;

• the absorption theorem, that inrementally �grows� the normal setion of

the quasi-normal map, until it enompasses the whole map.

In the following subsetions, we give a sketh of the proofs.

8.2 N÷therian indution

Both parts are proved using the proof tehnique alled N÷therian indution,

whih is an extension of strutural indution. Coq uses a variant of this teh-

nique based on the builtin notion of aessibility.

Let E be any set and R be a binary relation in E: R ⊆ E × E. As usual, for
any x, x′ ∈ E, we denote x R x′

the fat that there exists an R-ar from x to

x′
. We say that x is a R-predeessor of x′

and x′
is a R-suessor of x.

Intuitively, an element x ∈ E is said to be R-aessible if and only if any

desending R-hain beginning by x, i.e. x = x1, x2, . . . , xk, xk+1, . . . with

x2 R x1, . . . , xk+1 R xk, . . ., is �nite. The Calulus of Indutive Construtions
expresses that with the notion of aessibility.

De�nition 15 An element x ∈ E is said to be aessible by R, or R-
aessible, if all its R-predeessors are themselves R-aessible. If x has no

R-predeessor, x is said to be immediately R-aessible.
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It is lear that, if x is immediately R-aessible, then it is R-aessible. For in-
stane, let E = N be equipped with the usual natural strit order <. Then, 0 is
immediately <-aessible sine it has no predeessor, 1 is <-aessible beause
its only <-predeessor is 0, 2 is <-aessible beause its only <-predeessor is
1, et. Then all the natural numbers are <-aessible.

If E0 is the set of the elements of E whih are immediately R-aessible, the
set of all the elements of E whih are R-aessible is exatly (R∗ E0), where
R∗

as usual denotes the re�exive transitive losure of R.

De�nition 16 The set E equipped with R is said to be well-founded, or

N÷therian, if every x ∈ E is R-aessible.

If the ontext is lear, it is simply said that R is well-founded or N÷therian.

In this ase, if we want to prove a property Px for any x ∈ E, the N÷therian
indution priniple states that we an assume �for free� that Py is true for any

y ∈ E suh that y R x.

In our example, N equipped by < is N÷therian, sine E0 = {0}, and (<∗

{0}) = N. Then the N÷therian indution priniple for (N, <) orresponds to
the lassial �general indution�: to prove Pn for any n, assume Pk for k < n
and use that to prove Pn.

Then, the following result an immediately be proved using N÷therian indu-

tion.

Theorem 17 (E,R) is N÷therian if and only if, for every x ∈ E, there is

no in�nitely desending R-hain from x.

In our map ase, E is a type of maps, smap for the leaning part, qmap for

the absorption part. Proving that the proesses realizing the two parts by map

transformations are �nitely terminating needs suitable well-founded relations

on these map types.

8.3 The leaning theorem

This theorem states that any open onneted 2-gmap m is equivalent to a

quasi-normal map whose normal setion is N0,0,0. The proof of the leaning

theorem is split in �ve lemmas, eah showing that m is equivalent to a map

that satis�es one more property than in the previous step:

(1) step 1: m is equivalent to a map ontaining N0,0,0;

(2) step 2: like step 1, but the map also ontains no bump;

(3) step 3: like step 2, but the map also ontains no one-edged fae;
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(4) step 4: like step 3, but the map also ontains only one fae;

(5) step 5: like step 4, but the map also only has open verties, thus is quasi-

normal.

Step 1 simply renames two darts of an open edge into o0 and o1, thus reating
the normal setion of the map: indeed, normal map N0,0,0 only ontains these

two darts, so in order to be ontained by a map, that map only needs to

ontain the open edge made of o0 and o1.

The four other steps ensure one of the other properties of the quasi-maps

by repeatingly applying a onservative operation. The onvergene is proved

by N÷therian indution. The orresponding relation is denoted <cd, whih is

proved well-founded in smap .

De�nition 18 For any smap m and m′
, the relation m <cd m

′
is satis�ed

if the number of losed darts is stritly lower in m than in m′
.

In step 2, we want to prove that any open onneted 2-gmap m has an equiv-

alent ontaining N0,0,0 with no bump. We �rst use the indution priniple to

assume that there is suh an equivalent for any map m′ <cd m. Then we test

whether there is a bump in m. If not, then m itself is the sought equivalent. If

there is one, we remove it with onservative operation rmbump and show that

the resulting map m′′
is smaller than m w.r.t. <cd. Applying the indution

hypothesis to m′′
, we �nd a map with the good properties that is an equiv-

alent of m′′
, but then also of m by transitivity of equivalene, thus �nishing

the proof of step 2.

The other three steps, step 3 to step 5, work in the same way, respetively

with operations absorb, merge and slit. Figure 15 shows eah step of the

o1 o2 o1 o2 o1 o2

o1 o2o1 o2

step 1 step 2

step 3 step 4 step 5

Fig. 15. Example of leaning

leaning starting from a sample 2-gmap. It is lear that the number of losed

darts in the urrent map is stritly dereasing from step 2 to step 5.
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8.4 The absorption theorem

This is by far the most di�ult part of the proof, and also learly the least

intuitive. It only deals with quasi-normal maps. It is strutured like step 2 of

the leaning theorem, exept that it uses another relation, and that instead

of simply heking whether the map ontains bumps, it omputes whih of

fourteen di�erent lasses the map belongs to, applying a di�erent series of

onservative operations eah time.

The lass of the map depends on its on�guration near ld. For example, one

orresponds to maps where ld is open, another to maps where ld is inident to

a twisted ear pattern, another to maps where ld is inident to a bridge pattern,
et., with numerous subases, that are too long to present in this paper. Then,

for eah lass among the fourteen, an appropriate treatment is applied.

We prove that the proess onverges to a normal map by N÷therian indution

on a vetor omputed from the map. As eah step in the absorption proess

lexiographially dereases the vetor, and that the smallest vetors are shown

to only belong to normal maps, we infer that any qmap an be normalized in

a �nite number of steps. The vetor is made of 8 natural numbers v0, v1, . . . , v7
whih we use to de�ne well-founded relation <q on qmap :

De�nition 19 For any qmap m and m′
, m <q m

′
is satis�ed if the vetor

of m is lexiographially smaller than that of m′
.

Eah omponent vi is a ount of darts with a spei� feature, or a number

re�eting a harateristi of ld in the urrent map, e.g. a distane to a well

hosen other dart. For instane, v0 is the number of darts in the non-normal

setion, v3 is the number of darts between ld and the losest losed dart x, v1
is 0 if x ∈< α1 ◦α0 > (ld) and 1 otherwise, et. We remind that ld is the dart

that sits between the normal and non-normal parts of the qmap.

These are values that were empirially devised so that they worked well for our

indutive proof. More spei�ally, the vi are arefully hosen so that a single

step in the absorption proess will derease one of the vi without altering the
vj for j < i. Unfortunately, the omplexity of the absorption proess makes

the de�nition of vi themselves quite lengthy and omplex. It is neessary to

delve into the details of the theorem and its proof in order to understand

why these vi do indeed evolve this way, whih makes it hard to desribe them

suintly; even harder would be to give an intuitive idea as to why they

behave as expeted.

The only simple one to grasp is v0, the number of darts in the non-normal

setion. We prove that all steps of the absorption theorem either derease the

number of suh darts or leave it unhanged and derease some other vi. Fur-
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thermore, enough v0-dereasing steps will be applied so that it will eventually

reah 0, the v0 for a normal map. Similarly, we show that no step inreases

v1 unless v0 dereases at the same time, and so forth for the other vi. In the

end, all these results taken together prove that eah step lexiographially

dereases the vetor until v0 = 0, whih by de�nition haraterizes normality.

In other words, eah step brings the map loser to normality.

The strength of these proofs is to ertify that these ompliated operations are

indeed orret and atually lead to the desired result, whih annot be ensured

when writing a onventional program. For more detail about the steps and the

vetor, refer to [11℄.

9 Conlusion

In this artile, we have shown the basi struture of a Coq spei�ation of

generalized maps, whih topologially model ombinatorial surfaes. We then

have shown how we used it to adapt and formally prove the �rst part of the

famous theorem of lassi�ation of surfaes applying to subdivisions instead,

the subdivisions being lassi�ed aording to the set of surfaes that they

subdivide. This shows that the Coq system an atually be used in this �eld,

although the size of our development (over 100,000 lines) [12℄ suggests that it

ould bene�t from dediated tatis and ommands to relieve the user a little.

We now have a diretly usable powerful spei�ation of generalized maps that

an be used for further studies. The most obvious use would be to extend our

proofs in three diretions:

- First, we must prove the seond part of our lassi�ation theorem whih as-

serts that any two subdivision lasses are not onfused. Following [26℄ for the

losed surfaes, we must establish the link between the open surfae equiva-

lene and the triple (p, q, r) with r ≤ 2, whih an be admitted as the invariant

of an open surfae. We must prove that our elementary transformations pre-

serve it, what seems easy for p and q, but more di�ult for r, for whih the

orientability notion must be deepened. Then, two distint normal forms ne-

essarily orrespond to inequivalent surfaes. A useful task will be to formally

establish the relationship between q and χ, the Euler-Poinaré harateristi
(Set. 4), whih is often used to lassify surfaes.

- Seond, we have to inlude the losed subdivisions. For instane we ould as-

sume, like Gri�ths does for surfaes, that punturing in a losed subdivision,

onservatively transforming it, then losing bak the punture, is onservative

as a whole.

- Third, we ould speify embeddings in order to obtain surfae lassi�ation

from subdivision lassi�ation. This work involves to onsider lassial notions

of topology, with ontinuity, homomorphisms, homology, probably by using an
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axiomati system for the real numbers.

This spei�ation of gmaps ould probably also be used as a basis for work in

the disrete geometry �eld, where eah voxel ould be represented by a ubi

map, whih would then be ombined to form disrete surfaes [2℄. We ould

also use the program extration faility of Coq to automatially generate from

our proof a program that omputes the (p, q, r) of any gmap. Moreover, a

reasonable but still nontrivial modi�ation of our proof ould yield a erti�ed

program listing all the onservative operations used during normalization.

Finally, our long-term projet is to revisit the foundations of the omputational

geometry, using ombinatorial map onepts for topology and Coq for the

spei�ation and extration of erti�ed fontional algorithms, rather than to

produe them from srath, like in [22℄, without proof of orretness, or like

[21℄, with proof of total orretness. However, it will be neessary to study

the insertion of numerial omputations and round-o� errors in suh a formal

proof framework, what always remains a di�ult hallenge in theorem provers.
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