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Abstra
t

We des
ribe one of the �rst attempts at using modern spe
i�
ation te
hniques in

the �eld of geometri
 modelling and 
omputational geometry. Using the Coq system,

we developed a formal multi-level spe
i�
ation of 
ombinatorial maps, used to rep-

resent subdivisions of geometri
 manifolds, and then exploited it to formally prove

fundamental theorems. In parti
ular, we outline here an original and 
onstru
tive

proof of a 
ombinatorial part of the famous Surfa
e Classi�
ation Theorem, based

on a set of so-
alled �
onservative� elementary operations on subdivisions.
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1 Introdu
tion

Thanks to their re
ent rise in quality, e�
ien
y and user-friendliness, formal

spe
i�
ation and proof tools are starting to be used in all mathemati
al �elds,

in
luding geometri
 modelling and 
omputational geometry. In this paper, we

explain how we built a spe
i�
ation of the topology of geometri
 manifolds in

a higher-order logi
 framework with the Coq theorem proving system, then

use this spe
i�
ation to formally prove a 
ombinatorial part of the famous

and non-trivial Surfa
e Classi�
ation Theorem, restri
ted to 
ompa
t surfa
es

with boundary.

Topology is here des
ribed by generalized maps [33℄ [34℄, a 
ombinatorial model

of subdivisions of manifolds. We spe
ify gmaps (short for generalized maps),

in the Cal
ulus of Indu
tive Constru
tions (CIC) [9℄ [40℄, a higher-order logi


that allows manipulation of types and obje
ts as well as propositions and
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proofs. We then express in this 
al
ulus the properties that we wish to show,

and prove them by building 
orresponding proof terms from the axiom terms,

using the inferen
e rules of the 
al
ulus. In pra
ti
e, all the spe
i�
ation, proof

dis
overy and proof 
he
king work is done with help of the Coq proof assistant

[9℄ [1℄. Some of the theorems we thus proved are very di�
ult, whi
h testi�es

for the power of these tools.

Our spe
i�
ation features a 3-level hierar
hy of in
reasingly �tting but harder-

to-manipulate types to represent gmaps, a large number of 
onstru
tions, ex-

ploration and modi�
ation operations on gmaps, and over a thousand for-

mally expressed and proved theorems, in
luding in parti
ular a topologi
al

version of a part of the famous Surfa
e Classi�
ation Theorem. These theo-

rems were proved using a wide range of te
hniques, su
h as stru
tural indu
tion

or N÷therian indu
tion.

The long-term obje
tive of this work is to provide a very solid theoreti
al

basis for the development of geometri
 modellers, i.e. programs whi
h allow

to build and manipulate 
ombinatorial surfa
es and even 
ombinatorial man-

ifolds of higher dimensions. Spe
i�
ation and proof te
hniques allow �rstly to


he
k the validity and relevan
e of models and implementations by proving

theoreti
al results related to them. This is the 
ase here for the Surfa
e Clas-

si�
ation Theorem. Se
ondly, they allow to formally 
he
k the 
orre
tness and

termination of algorithms and operations. In our eyes, these two goals are of

equal importan
e, and justify the need to develop and improve these already

powerful formal te
hniques, so that they 
an be used to ta
kle di�
ult prob-

lems of geometri
 modelling and 
omputational geometry. For instan
e, these

tools 
ould be very helpful in the study of the de�nition and manipulation of

dis
rete surfa
es, whi
h are a very important link between 
omputer graphi
s,

geometri
 modelling and imaging.

The �rst part of this resear
h is detailed in [13℄ and [14℄, whi
h are mainly

intended to the formal spe
i�
ation and automated proof 
ommunity. In the

present paper, we give a 
omplete panorama of our work in
luding the se
ond

part, while being less exhaustive on formal aspe
ts and more fo
used on geo-

metri
 modelling features. However, the entire Coq sour
e of the development


an be downloaded [12℄.

The Surfa
e Classi�
ation Theorem is one of the most deep and ex
iting result

in algebrai
 topology of dimension 2. In [26℄, Gallier and Xu o�er a substantial

history of the dis
overy and of the numerous attempts to prove this result.

Indeed, a rigorous proof always needs many de�nitions and lemmas around

topology, algebra and surfa
es. So, the theorem says that, despite the fa
t

that surfa
es appear in many diverse forms, they 
an be 
lassi�ed, whi
h

means that every (
ompa
t) surfa
e is equivalent to exa
tly one representative

surfa
e, also 
alled a surfa
e in normal form.
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Of 
ourse, to make this statement rigourous, it is ne
essary to pre
ise: (i) what

is a surfa
e, (ii) what is the equivalen
e of surfa
es, (iii) what are normal forms

of surfa
es. This is the subje
t of entire textbooks [37,23,46,29,26℄, in whi
h

the Surfa
e Classi�
ation Theorem is the major result. However, the basi


mathemati
al tools, the normal forms of surfa
es, and the proof te
hniques,


an di�er signi�
antly. In the following, to address the problem, we will provide

a way whi
h is based on 
ombinatorial tools and formalisms well-adapted to

the help of an up-to-date intera
tive proof assistant.

After this introdu
tion, we brie�y present some related work in Se
t. 2. In Se
t.

3, we state pre
isely what we mean by surfa
es, emphasizing the link between

surfa
e subdivisions and generalized maps. In Se
t. 4, we des
ribe intuitively

and then formally the model of generalized maps, as well as important related

basi
 notions. In Se
t. 5, we introdu
e the Coq notation to des
ribe the basi


types involved. In Se
t. 6, we start fo
using on the 
lassi�
ation theorem

by listing a set of operations on generalized maps that we 
all 
onservative,

and use them to de�ne a notion of topologi
al equivalen
e. In Se
t. 7, we

des
ribe the easier se
ond half, 
alled the trading theorem, of the part of the


lassi�
ation theorem we deal with. In Se
t. 8, we deal with the more 
omplex

(and meaningful) �rst half, 
alled the normalization theorem, and we 
on
lude

in Se
t. 9.

2 Related work

There are several approa
hes to the representation and building of geometri-


al obje
ts: using equations, viewing them as Boolean 
ombination of basi


obje
ts, or des
ribing their boundaries. In the early 80s, Requi
ha [45℄ de-

signed a framework to 
ompare the di�erent solid representation methods. In

the late 80s, Lienhardt developed a powerful tool for boundary representation,

the generalized maps, or gmaps [33℄ [34℄. This model is an extension of Cori's

hypermaps [10℄, whi
h were themselves inspired by Ja
ques and Tutte's 
om-

binatorial maps [30℄ [47℄. The generalized maps have the same modeling power

as other models, for instan
e the ordered stru
tures of Brisson [4℄, in the sense

that they 
an model the mesh topology of any surfa
e, open (i.e. with bound-

aries) or not, orientable or not. Their advantages are a pre
ise mathemati
al

des
ription in terms of algebrai
 
ombinatorial stru
ture, an interesting sav-

ing of 
on
epts making implementations easier, and a great extension power

allowing to des
ribe manifolds of any dimension [34,35℄.

Despite the e�orts to improve them, the topologi
al models used for geometri


modelling, in
luding gmaps, remain quite 
ompli
ated, often spawning very


omplex algorithms. However, quite little work has been done to formally

spe
ify them in order to redu
e the odds of implementation faults. Several
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spe
i�
ation te
hniques have been experimented, su
h as set-based models,

algebrai
 spe
i�
ations, term rewriting, fun
tional programming. For refer-

en
es, see for instan
e [18℄. Dufourd developed a generi
 algebrai
 spe
i�
ation

for subdivisions [16℄ [17℄ on whi
h an intera
tive 3D topology-based modeller

Topo�l designed by Bertrand was based [3℄. Finally, an attempt of fun
tional

spe
i�
ation and programming in OCaml of 
lassi
al 
omputational geometry

problems with 
ombinatorial maps is related in [22℄. One of the main short-


omings of these spe
i�
ation experiments is their la
k of using supports for

formal and 
omputer-veri�able proofs. But even those fall short, as their proof

fa
ilities are outdated. Hen
e our motivation to work with a state-of-the-art

spe
i�
ation and proof assistant.

Theorem provers have indeed gone a long way. Among the �rst, one 
an 
ite

Automath by de Bruijn, based on a typed lambda-
al
ulus, and Prolog by

Colmerauer and Kowalski, implementing reasoning by resolution in 
lassi-


al �rst-order logi
. Both date ba
k to the sixties. Unlike these two, mod-

ern provers are based on higher-order logi
s, allowing quanti�
ation over sets,

types and fun
tions. There are 
urrently two 
lasses of proof assistants: theo-

rem provers, that are dedi
ated to one or several �elds and work by running

spe
ialized proof sear
h algorithms against the sought goal, for example PVS,

and ta
ti
 provers, generi
 proof systems that work by re�ning a goal using

simple 
ommands 
alled ta
ti
s, for instan
e Isabelle. The Coq system [8℄,

based on the Cal
ulus of Indu
tive Constru
tions, is one of the most powerful

of these, and has already been su

essfully used in many di�erent �elds.

Geometry, but not geometri
 modelling, has always been popular for auto-

mated dedu
tion. One of the very �rst automati
 theorem provers was ded-

i
ated to plane geometry [27℄, reasoning with the resolution rule from well-


hosen ad ho
 axioms. Heyting's intuitionisti
 plane a�ne geometry axiomati


system was used by von Plato [48℄ and Kahn [31℄ to develop and test in Coq

their own 
onstru
tive theory of ordered a�ne geometry. We used Coq to study

Hilbert's axiomati
s in a 
onstru
tive framework [15℄. Besides these �pure� ge-

ometry approa
hes, algebrai
 resolution methods were also implemented in an

ad ho
 way, most notably in [7℄. Pi
hardie and Bertot formalized in Coq the

development of proved 
onvex hull algorithms from an axiomati
 system by

Knuth [32℄ [41℄, while Mei
kle and Fleuriot ta
kled similar problems in Isabelle

[38℄.

Combinatorial hypermaps have been formalized in Coq/SSRe�e
t by Gonthier

et al. to prove the very di�
ult Four Color Theorem [28℄. Finally, the only

geometri
 modelling-related automated dedu
tion experiments with 
ombina-

torial maps that we are aware of is Puitg and Dufourd's proofs of a planarity


riterion and the Euler-Poin
aré formula [42,19℄ [44℄, leading to the formal

proof of a dis
rete Jordan 
urve theorem in orientable 
losed surfa
es [20℄.

Very re
ently, 
orre
tness proofs of algorithms in the 
ontext of hypermaps
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were 
ondu
ted for 
onvex hull problems [5℄, and Dufourd and Bertot have

a
hieved in Coq a proof of total 
orre
tness of a Delaunay 2D algorithm [21℄.

Our original idea to prove the 
lassi�
ation theorem was to adapt in a for-

mal 
ontext one of the 
lassi
al proofs. Moreover, following Gri�ths [29℄, we

wanted to avoid 
lassi
al mathemati
al treatments with topologi
al spa
es,


ontinuity, homeomorphisms and homology, in favor of a dire
t proof with


ombinatorial arguments using the intuitive notion of generalized map. We

then de
ided to build a new proof adapting the attra
tive approa
h of Grif-

�ths with �paper surfa
es� − also 
alled �polyhedral surfa
es� or �rubber sheet

surfa
es� by Seifert and Threlfall [46℄ − to the gmap notions. So, we fully use

notions su
h as panel, panel addition, reasoning by stru
tural and N÷therian

indu
tion as well. However, to use the Coq system, we had to be extremely

rigorous in the 
apture of these notions, to avoid axioms given by the writ-

ing of �agreements� [29℄, and to 
learly separate what is geometry, topology

and 
ombinatori
s. Although we ex
luded approa
hes based on word rewriting

whi
h seemed too far from this goal, we were inspired by Fomenko's work [25℄,

to de�ne some 
onservative operations able to prove what is 
alled the trading

theorem and the normalization theorem.

3 Surfa
es and subdivisions

As it is the basis of algebrai
 topology in dimension 2, the approa
h that we

follow in this se
tion is 
ommon to most textbooks on surfa
es [37,23,46,29,26℄,

but our terminology is mainly borrowed from Gri�ths [29℄. Classi
ally, a sur-

fa
e (or 2-dimensional manifold) is de�ned as a Hausdor� spa
e where ea
h

point's neighborhood is homeomorphi
 to either R
2
or the half-spa
e y ≥ 0.

This de�nition is �ne for mathemati
al study, but not for a
tual 
omputer use:

it is too abstra
t to realisti
ally base a modeller on it. This kind of 
ontinu-

ous obje
t being too hard to manipulate, surfa
es are often modelled instead

by using 
ombinatorial and modular models, whi
h allow easier storing and

handling of surfa
es. A very 
ommon approa
h is to subdivide a surfa
e into

simple elementary surfa
es and see how these elementary bri
ks are 
onne
ted

to one another to form the original surfa
e.

Depending on the model, the elementary surfa
es may be triangles, or, in our


ase, panels. A panel is a surfa
e that is homeomorphi
 to a dis
, i.e. that is

the image of a dis
 by a bi
ontinuous bije
tion to it. Figure 1 shows a few

panels: (a) a dis
, (b) a polygon, (c) a slit ring, and (d) a 
ap. Panels have

a single boundary whi
h is a Jordan 
urve de
omposed into a sequen
e of

Jordan ar
s, 
alled edges, bounded by points, 
alled verti
es. For us, a surfa
e

is a pat
hwork of panels sewn along their edges. Some edges may be unsewn,

they 
orrespond to the boundaries of the subdivided surfa
e. Ea
h boundary
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(b) (c)(a) (d)

Fig. 1. Examples of panels

is a Jordan 
urve determining a hole in the surfa
e.

Figure 2 shows a few examples of subdivided surfa
es. Surfa
e (a) is a triangle,

(e)

(c)(b)(a)

(d)

Fig. 2. Examples of surfa
e subdivisions

made of four panels. It has a single boundary. Surfa
e (b) is a ring, made of a

single panel in whi
h two parts of the boundary are sewn in order to 
lose the

ring. It has two boundaries (the �inside� and �outside� boundaries). Surfa
e

(c) is a M÷bius strip, a ring in whi
h the panel is twisted before its ends

are sewn. It has a single boundary. Surfa
e (d) is a torus, made of a single

bent re
tangular panel the opposite sides of whi
h are sewn to ea
h other.

It has no boundary. Finally, surfa
e (e) is a torus that has been pun
tured,

giving it a boundary. This approa
h allows to model open (i.e. with �nitely

many boundaries) or 
losed (i.e. without boundary) 
ompa
t surfa
es as well

as orientable or non-orientable 
ompa
t surfa
es, like the M÷bius strip or the

Klein bottle.

The theorem of 
lassi�
ation deals with the 
lassi�
ation of 
ompa
t surfa
es

a

ording to their topology. Two surfa
es belong to the same 
lass if they are

homeomorphi
, i.e. if there exists a bi
ontinuous bije
tion from one onto the

other. In textbooks, the theorem has di�erent equivalent formulations. The

one that we retain here states:

Theorem 1 (i) Any 
onne
ted 
ompa
t surfa
e with boundaries belongs to

one 
lass, the members of whi
h are homeomorphi
 to ea
h other. Ea
h 
lass

is 
hara
terized by a triplet of natural numbers (p, q, r) with r ≤ 2.
(ii) For r ≤ 2, r′ ≤ 2 and (p, q, r) 6= (p′, q′, r′), the 
lasses represented by

(p, q, r) and (p′, q′, r′) are distin
t.
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Of 
ourse, other formulations are possible when one retains other normal

forms, i.e. representatives of the 
lasses [37,23,46,29,26℄. Moreover, although

the theorem also holds for 
losed surfa
es − and is often �rst proved for them

−, whi
h are obtained from open surfa
es by adding lids on their holes, we

remind the reader that we fo
us on open surfa
es in this paper.

The values of p, q and r are very meaningful regarding the surfa
es in the


orresponding 
lass: ea
h surfa
e in 
lass (p, q, r) features p pun
tures (in ad-

dition to the outer boundary), q handles and r twists. Thus, surfa
es in Figure

2 belong in order to 
lasses (0, 0, 0) for (a), (1, 0, 0) for (b), (0, 0, 1) for (c) and
(0, 1, 0) for (e). Surfa
e (d) belongs to none as it is a 
losed surfa
e, and as

su
h 
annot be applied the theorem we 
onsider.

The surfa
es from Figure 2 are a
tually very useful. Generally, in mathemati
s,

it is often 
onvenient for any 
lassi�
ation theorem to exhibit a 
anoni
al (or

normal element) for ea
h 
lass, a representative element of this 
lass. For this

theorem, following Gri�ths [29℄, we use only sewn panels to build the normal

surfa
es, whi
h we 
all plans. Thus, the plan for 
lass (p,q,r), denoted Pp,q,r,

is built by:

• starting with a dis
 (a simple panel with a boundary);

• sewing p rings to its boundary (thus adding p pun
tures);

• sewing q pun
tured tori to the outer boundary (the tori are sewn along part

of their pun
ture, thus adding q handles);

• sewing r M÷bius strips to the boundary (thus adding r twists).

Figure 3 shows the normal surfa
e P1,1,1 for 
lass (1, 1, 1), a surfa
e with two

a b c d

Fig. 3. Surfa
e P1,1,1

boundaries (the outer boundary and a pun
ture), one handle and one twist

(with simpli�ed drawings). Thus, part (i) of the 
lassi�
ation theorem states

that any open surfa
e is homeomorphi
 to a surfa
e like that in Figure 3, with

r ≤ 2.

To re
over 
losed surfa
es, it is enough to glue lids along the boundaries:

• the unique dis
 is 
losed into a sphere;

• the p rings be
ome p dis
s;

• the q tori be
ome q handles;

• if r = 1, the unique M÷bius strip be
omes one 
ross-
ap (or proje
tive
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plane), else (r = 2) the two M÷bius strips are glued together into one Klein

bottle.

So, the result 
omplies with the 
lassi�
ation theorem for 
losed surfa
es

[37,23,46,26℄.

4 Generalized maps

4.1 Basi
 de�nitions and properties

Generalized maps (gmaps, in short) are a 
ombinatorial model that may be

used to represent the topology of manifolds. Gmaps are most importantly 
har-

a
terized by their dimension, whi
h is also the dimension of the manifolds that

they 
an represent. Gmaps of dimension −1, or −1-gmaps, represent isolated

verti
es, 0-gmaps isolated edges, 1-gmaps simple 
urves, 2-gmaps surfa
es,

3-gmaps volumes, et
.

A gmap is a 
olle
tion of basi
 abstra
t elements 
alled darts, intuitively half-

edges, that are 
onne
ted by involutions αk, k being a dimension, in order to

form 
ells. We denote the (in�nite) type of darts by dart. While they are a


ompletely abstra
t type in our spe
i�
ation, darts are usually implemented

as integers or pointers. Although our Coq spe
i�
ation en
ompasses all di-

mensions, we fo
us here on 2-gmaps in order to make de�nitions simpler. A


ommon mathemati
al de�nition of su
h an obje
t is the following

De�nition 2 A generalized map of dimension 2, or 2-gmap, is a quadruplet

(D,α0, α1, α2), where D is a �nite subset of dart and where the αk are invo-

lutions on D, su
h that α0 and α1 have no �xpoint and that α0 ◦α2 is also an

involution.

Thus, with D ⊂ dart, D �nite and α0, α1, α2 : D → D, M = (D,α0, α1, α2)
is a 2-gmap if:

• ∀x ∈ D, ∀k ≤ 2, α2
k(x) = x;

• ∀x ∈ D, ∀k ≤ 1, αk(x) 6= x;
• ∀x ∈ D, (α0 ◦ α2)

2(x) = x.

A dart x is said to be sewn at dimension k, or k-sewn, to dart y if αk(x) = y.
In this 
ase, as the αk are involutive, y is k-sewn to x as well. Dart y is also

said to be the k-neighbor of dart x if αk(x) = y. Ea
h of the αk has a di�erent

purpose: α0 is used to make up edges, α1 simple 
urves, and α2 surfa
es. In

general, for any given k, αk is used to make up 
ells of dimension k.
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The 
onditions imposed on the αk enfor
e the 
onsisten
y and 
ompleteness

of 
ells: involutivity of the αk guarantees that ea
h dart has exa
tly one k-
neighbor for ea
h k. The la
k of �xpoints for α0 and α1 prevents the presen
e

of dangling darts. As we will see later, �xpoints of α2 are the darts that belong

to a boundary. Finally, for
ing α0◦α2 to be involutive ensures that whenever a

dart is 2-sewn to another, their respe
tive 0-neighbors are also 2-sewn. Thus,
only whole edges are 2-sewn.

Figure 4 shows the standard representation for darts and sewings (Left),

yx

x

x

α x = y2

α x = y0

α x = y1
yx

y

Fig. 4. Standard graphi
 representation of

darts, sample 2-gmap

as well as a sample 2-gmap subdividing a prism with a triangular base and

la
king the front fa
e (Right). In this �gure, x and y are darts. A dart pi
tured

without k-neighbor is impli
itely k-sewn to itself.

4.2 Cells and invariants

With the above de�nitions, we 
an introdu
e usual notions of topology, most

of them being des
ribed as orbits:

De�nition 3 Let D be a set and f1, f2, . . . , fn fun
tions on D. For any x ∈
D, the orbit of f1, f2, . . . , fn at x is de�ned to be the smallest subset of D

ontaining x and stable by all fun
tions fi. It is denoted < f1, f2, . . . , fn > (x).

Let M = (D,α0, α1, α2) be any 2-gmap. With orbits, 
onne
ted 
omponents

and 
ells of M are easy to de�ne:

De�nition 4 The 
onne
ted 
omponent of M in
ident to dart x ∈ D is the

2-gmap M ′ = (D′, α′

0, α
′

1, α
′

2) satisfying:

• D′ =< α0, α1, α2 > (x);
• ∀k | 0 ≤ k ≤ 2, α′

k is the restri
tion of αk to D′
.

9



De�nition 5 For any x ∈ D and any i, j, k ≤ 2 pairwise distin
t, we 
all

orbit < αi, αj > (x) the k-
ell of M in
ident to x. A 0-
ell is also 
alled a

vertex, a 1-
ell an edge and a 2-
ell a fa
e. We de�ne the map of k-
ells of M
to be the algebrai
 stru
ture regrouping all the k-
ells of M , obtained from M
by ripping all its k-sewings. It is denoted Mk.

De�nition 6 For any x ∈ D and any k ≤ 2 we 
all orbit < α0, α1, . . . , αk−1 >
(x) the simple k-
ell of M in
ident to x. Like we did for 
ells, we de�ne the

map of simple k-
ells as the algebrai
 stru
ture regrouping all the simple k-
ells
of M . It is denoted MS

k . A simple 
ell of dimension 0, 1 and 2 is respe
tively

a single dart, an open edge and a 
y
le of alternately 0- and 1-sewn darts.

In this de�nition, M2 is a 2-gmap where every dart is an α2-�xpoint, M0

and M1 are two 1-gmap (with 2 involutions) when α0 and α1, whi
h may have

�xpoints, are renumbered 
onveniently. A
tually, MS
0 and MS

1 are respe
tively

a 0-gmap and a 1-gmap. Also note thatM2 = MS
2 . Figure 5 shows an example

M0

M1

M0
S

M1
S

δ(M)

M

M2=M2
S

obvious embedding for M other embedding for M

Fig. 5. An example of a 2-gmap and its

maps of 
ells, 2-gmap of boundaries

and standard embedding

2-gmap as well as its maps of 
ells. In this example, M has two 
onne
ted


omponents. The 2-gmap δ(M) is the 2-gmap of boundaries of M : its darts
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are the darts of M that are in
ident to a boundary, ea
h of them being 1-
sewn in δ(M) to its boundary-neighbor in M , the notions of boundary and

boundary neighborhood being de�ned as:

De�nition 7 A dart x ∈ D is said to be in
ident to a boundary of M if

α2(x) = x. A dart in
ident to a boundary is 
alled external, it is 
alled internal

otherwise.

De�nition 8 A gmap without boundary is said to be 
losed, and open other-

wise. An edge whose darts are sewn to themselves is said to be open (it has

2 darts), and 
losed otherwise (it has 4 darts). A vertex 
ontaining a dart

in
ident to a boundary is said to be open, and 
losed otherwise.

De�nition 9 For any dart x, dart yk = (α2 ◦α1)
k(x) is 
alled the boundary-

neighbor of x if k is the smallest natural number su
h that yk is in
ident

to a boundary (i.e. α2(yk) = yk) and yk 6= x. All the external darts have a

boundary-neighbor, what is not ne
essarily the 
ase for the other darts.

De�nition 10 A path is a �nite sequen
e of dimensions. Following a path

n0, n1, . . . , nk from dart x yields dart αnk
◦ · · · ◦ αn1

◦ αn0
(x).

Now that we have de�ned darts, verti
es, edges, fa
es and 
onne
ted 
ompo-

nents of a 2-gmap, we note their respe
tive numbers by d, v, e, f and c.

When the gmap is 
onne
ted, i.e. c = 1, it represents the topology of a sur-

fa
e subdivision, and, 
onversely, the topology of any surfa
e subdivision is

represented by a 
onne
ted gmap. Then, we 
an 
ompute the Euler-Poin
aré


hara
teristi
 χ of the underlying surfa
e by the famous formula (slightly gen-

eralized):

χ = v + e+ f − d.

Let us go ba
k to the former 
hara
teristi
s, (p, q, r), in order to better under-

stand them. Fistly, p is about one unity the number of boundaries b. Se
ondly,
when it is redu
ed to 0, 1 or 2, r is 
alled the orientability fa
tor of the surfa
e.
Thirdly, in this 
ase, q is another 
lassi
al topologi
al invariant of the surfa
e
whi
h is 
alled its genus. It 
an be interpreted either as the number of handles,

sometimes 
alled tunnels, of the surfa
e, or as the greatest number of (
losed)

Jordan 
urves that 
an be drawn on the surfa
e without dis
onne
ting it. Note

that the tunnels must not be 
onfused with holes or pun
tures.

These numbers are linked by well-known formulae [33℄:

b = p+ 1,

q = 1− (r + b+ χ)/2.

11



Thus (r+ b+χ) is ne
essarily even, and, q being a natural number, we always

have:

r + b+ χ ≤ 2.

Finally, in [33,34℄, it is shown how all these surfa
e 
hara
teristi
s 
an be


omputed from a 
orresponding 2-gmap, whi
h is implemented in Topo�l [3℄.

4.3 Embedding and 
onservative operations

The 
omplete link between subdivisions like 2-gmaps and a
tual surfa
es is

provided by the notion of embedding, i.e. the proje
tion of topologi
al obje
ts

into a representation spa
e. We are interested here in 
ontinuous embeddings,

embeddings that have �good properties� whi
h make them intuitively valid.

For instan
e, all darts from the same topologi
al vertex must be embedded

into the same geometri
al vertex. Similarly, all darts from the same topologi
al

edge must be embedded into the same geometri
 edge and all darts from the

same topologi
al fa
e must be embedded into the same geometri
 fa
e. In
ident

topologi
al obje
ts must be embedded into in
ident geometri
al obje
ts.

Briant and Singerman [6℄, and Lienhardt [35℄, have shown that gmaps (with

all the above 
onstraints) exa
tly model all the subdivisions of 
ompa
t sur-

fa
es, open or 
losed, orientable or not. However, as we had de
ided to fo
us

on 
ombinatorial aspe
ts, we did not formally spe
ify embeddings, as it would

have required extensive algebra, 
ontinuous topology and geometry develop-

ments, probably making the spe
i�
ation at least twi
e as large. But, forgoing

embeddings has a dramati
 
onsequen
e. Indeed, the theorem of 
lassi�
ation

of surfa
es applies to surfa
es, i.e. embedded topologi
al obje
ts, while all we

have available is a model of the topology of surfa
es. Thus, the theorem 
annot

be dire
tly expressed in our spe
i�
ation. The �rst step in dealing with this

theorem was to �nd a way to adapt the theorem to the 
ombinatorial topology

world.

Our solution was to introdu
e what we 
alled 
onservative operations, simple,

lo
al operations that, when applied to a suitable 2-gmap, are strongly believed

not to alter the set of surfa
es that this 2-gmap subdivides. Proving so would

require spe
ifying embeddings. We stress that while 
onservative operations

were inspired by lo
al surfa
e deformations, they only deal with subdivisions

and not surfa
es. These operations are listed in Se
t. 6. This allows us to


lassify subdivisions: two 2-gmaps are 
onsidered topologi
ally equivalent if

one 
an be obtained from the other by applying 
onservative operations. Thus,

two 2-gmaps are equivalent only if they subdivide the same surfa
es. Then,

we proved the �rst part of the following full theorem of 
lassi�
ation:

Theorem 11 (i) Any open 2-gmap is topologi
ally equivalent to a 2-gmap

12



Np,q,r that subdivides one of the Pp,q,r surfa
es, with r ≤ 2.
(ii) When r ≤ 2, r′ ≤ 2 and (p, q, r) 6= (p′, q′, r′), Np,q,r and Np′,q′,r′ are not

topologi
ally equivalent.

Thus, we shifted from a 
lassi�
ation of surfa
es to an analoguous 
lassi�-


ation of subdivisions, for whi
h we proved part (i). In order to get ba
k to

surfa
es, we need to make the following fundamental 
lassi
al hypothesis:

Hypothesis. Two surfa
es that are subdivided by the same 2-gmap

are homeomorphi
.

Indeed, for any surfa
e S there is (by our de�nition of surfa
es) a 2-
gmap M that subdivides it. A

ording to the theorem, M also subdivides one

of the Pp,q,r. Be
ause of the hypothesis, S is homeomorphi
 to Pp,q,r. Thus

any surfa
e S is homeomorphi
 to one of the Pp,q,r, whi
h proves part (i) of

the theorem of 
lassi�
ation of surfa
es. Were the hypothesis not to hold, we

would be left with a (still interesting) theorem of 
lassi�
ation of subdivisions

a

ording to what they 
an subdivide.

5 Coq spe
i�
ation

Now that we have introdu
ed the mathemati
al notions that appear in our

work, let us see how they are expressed in Gallina, Coq's spe
i�
ation language

that allows to write terms of the Cal
ulus of Indu
tive Constru
tions

1
.

5.1 Binary relations

Binary relations are only used to model the αk, but, in order to be as modular

as possible, they are spe
i�ed separately. A
tually, this spe
i�
ation of rela-

tions is an extension of [42℄ [44℄. It 
an only deal with relations on obje
ts of

the same type.

Binary relations may be seen as two-pla
e predi
ates. Thus, in Gallina, we

spe
ify the type of binary relations on a type as an alias for the type of two-

pla
e predi
ates on this type, with 
ommand Definition.

DEFINITION 1 (BINARY RELATION) : Let E be a set. A binary relation on

E is a two-pla
e predi
ate on E, i.e. a fun
tion that asso
iates a proposition

to any two elements of E:

1
We used the Coq version 7, the syntax has evolved in later versions
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Definition relation : Set → Type

:= λE:Set E → E → Prop

As eviden
ed by the λ, the Gallina syntax is quite 
lose to that of fun
tional

languages su
h as ML, Caml or Haskell. We have slightly simpli�ed this lan-

guage here by adding usual mathemati
al symbols in order to make terms

more readable to neophytes.

This 
ommand de
lares symbol relation as an abbreviation for higher-order

lambda-term λE:Set E → E → Prop. The notation x:T is a type judgement

meaning �term x is of type T �.

Prop is the builtin type for propositions. Propositions are not booleans;

booleans are a two-value 
on
rete type whose values are often asso
iated to

propositions a

ording to their truth or falsehood. Symbol → is (from an in-

tuitive point of view) overloaded, it represents both the 
onne
tor to build

fun
tion types and logi
al impli
ation. Builtin type Set is that of 
on
rete

types, the types of obje
ts that we want to build and use, su
h as numbers,

lists, maps, darts, et
. Builtin Type is the type of Set , of Prop , and of

fun
tions into either of these types.

The de�nition expli
itly states that the type of relation is Set → Type,

the type of fun
tions from Set into Type. Thus, an obje
t of type

relation is a fun
tion that, when applied to a 
on
rete type E (the type

itself, not an obje
t of this type), yields the type E → E → Prop of two-

pla
e predi
ate on E .

For instan
e, nat being the prede�ned type for natural numbers, relation

nat is a short
ut for the redex λE:Set E → E → Prop nat, whi
h β-
redu
es to nat → nat → Prop, the type of binary predi
ates on nat .

Usual properties of relations are also spe
i�ed with the de�nition me
hanism:

DEFINITION 2 (INJECTIVITY) : Let E be a set and R a relation on E.

R is inje
tive if equality of images by R implies (synta
ti
al) equality of

arguments:

Definition inje
tive : (∀E:Set) (relation E) → Prop

:= λE:Set λR:(relation E)

(∀x,x',y:E) (R x y) → (R x' y) → x=x'.

DEFINITION 3 (INVOLUTIVITY) : Let E be a set and R a relation on E. R

is involutive if for any element, an image of an image of this element is the

element itself:

Definition involutive : (∀E:Set) (relation E) → Prop

:= λE:Set λR:(relation E)

(∀x,x',y:E) (R x y) → (R y x') → x=x'.
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In Coq, the usual ordering on natural numbers is named lt, its type is nat

→ nat → Prop. A

ording to our de�nitions, the inje
tivity of lt should

be represented by term (inje
tive nat lt). However, noti
e that nat is

redundant: indeed, the �rst argument of inje
tive is the type on whi
h its

se
ond argument is a relation. Thus, as lt is a relation on natural numbers,

the only possible �rst argument of inje
tive is nat (or any equivalent

type). Coq is able to infer this kind of redundant type arguments if asked to.

With this fa
ility, (inje
tive lt) be
omes a valid term. Be aware that all

our further de�nitions use this fa
ility.

In the same way, we de�ne fun
tionality (fun
tional), irre�exivity

(irreflexive), the proprety of being the identity (identi
al), as well as

the 
omposition of two binary relations (
omposition, of type (∀E:Set)
(relation E) → (relation E) → (relation E) ), partial surje
tivity

(surje
tive), the property of being a permutation (permutation) on a sub-

set of E, and the property of being an involution (involution).

5.2 Darts

Little is said about darts in our previous se
tions, ex
ept that their type is

dart. Thus, we de
lare them as an abstra
t type, in order to remain as

generi
 as possible.

PARAMETER 1 (DART) : there exists a type of darts 
alled dart:

Parameter dart : Set.

This de
laration adds a new obje
t, dart of type Set , into the envi-

ronment. This di�ers from a De�nition 
ommand, whi
h simply 
reates an

abbreviation to an already existing term. This de
laration does not say mu
h

about dart. For our proofs, we need to make two assumptions on dart :

• Darts may be 
ompared. More pre
isely, equality of darts should be de
idable,

i.e. given any two darts, we must assume that there is a way to �nd out

whether they are equal or not. This is not the 
ase for any imaginable set of

darts, for instan
e if darts were represented by formulae over reals that use

exponents: there is no algorithm that allows to 
he
k whether two formulae


orrespond to the same one real number.

This assumption is ne
essary, as the CIC, being a 
onstru
tive logi
, does

not allow reasoning by 
ases if not provided with a method to determine

the relevant 
ases. Thus, in order to have spe
ial 
ases in our proofs when

two darts are equal, we must assume that we are able to test their equality.

This is an axiom of our spe
i�
ation:

DEFINITION 2 (DECIDABILITY OF DART EQUALITY) :

Axiom EQ_DART_DEC : (∀x,y:dart) x=y∨¬x=y
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• There are always unused darts available. We will regularly need fresh darts in

our algorithms, so we must assume that there is an in�nite number of them,

as well as have a way to referen
e them. To do so, we assume that there

is an inje
tion idg (for inje
tive dart generator) from natural numbers

into dart, thus ensuring that there is at least as many darts as there are

naturals:

PARAMETER 3 (DART GENERATOR) :

Parameter idg : nat → dart.

DEFINITION 4 (INJECTIVITY OF idg) :

Axiom IDG_INJ : (∀n,n':nat) (idg n)=(idg n') → n=n'

5.3 Sewings

A sewing is a triplet made of a natural number (the dimension of the sewing,

not bounded by 2 in the beginning) and the two darts that are sewn:

DEFINITION 4 (SEWINGS) :

Indu
tive sw : Set := 
 : nat → dart → dart → sw.

The type of sewings sw is de�ned as an indu
tive type, i.e. the smallest type

that 
ontains all the terms that 
an be built using only its 
onstru
tors. Type

sw only has a single 
onstru
tor, a three-argument fun
tion that takes one

nat and two darts to 
reate a sewing. Thus, if for instan
e s, t and u

are darts, then (
 0 s t), (
 3 s u), (
 2 u u) and (
 2 t s) are four

sewings. Constru
tors are assumed to be distin
t and inje
tive, thus those four

sewings are distin
t as the arguments of 
 are distin
t (unless s=t=u, in whi
h


ase the last two sewings are equal). The fa
t that a sewing 
an be built only

using 
 is exploited by our �rst lemma:

LEMMA 1 (INVERSION OF SEWINGS) : any sewing is an image of 
:

Lemma SW_INV : (∀s:sw)
(∃n:nat |(∃x,y:dart | s=(
 n x y)))

This kind of lemma 
an be linked to the elementary sele
tors for a type in

a traditional programming language. They will be used to manipulate sw

while building proofs of propositions related to sewings.

5.4 Free maps

Free maps are the simplest type we use to represent gmaps. A free map is

simply a �nite 
olle
tion of darts and sewings, de�ned mu
h like an ML list:
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DEFINITION 5 (FREE MAP) :

Indu
tive fmap : Set :=

v : fmap

| i : dart → fmap → fmap

| l : sw → fmap → fmap

This is an indu
tive type de�nition, whi
h means that the type of free maps

is the smallest type of terms that 
an be built with 
onstru
tors v, i and

l. In other words, a free map is either the empty map v, a pair pre
eded

by i of a dart and a free map (intuitively the insertion of a dart into a free

map), or a pair pre
eded by l of a sewing and a free map (intuitively the

addition of a sewing into the map). When an indu
tive type is de�ned, Coq

automati
ally generates a stru
tural indu
tion s
heme for it. Here, it allows

to prove properties on free maps by showing that they are true for the empty

map v and stable by dart insertion with i and sewing insertion with l. Most

proofs on fmap use this prin
iple.

We 
an then de�ne two basi
 sele
tors as predi
ates on fmap, using a similar

indu
tive 
onstru
tion:

DEFINITION 6 (SUCCESSORS) : Let k be a dimension, x and y two darts

and m a free map. Dart y is a k-su

essor of x in map (l (
 k x y) m);

this property is stable by dart and sewing insertions:

Indu
tive su

 : nat → fmap → dart → dart → Prop

:= SUCC_L_X : (∀k:nat; ∀m:fmap; ∀x,y:dart)
(su

 k (l (
 k x y) m) x y)

| SUCC_I : (∀k:nat; ∀m:fmap; ∀x,y:dart) (∀d:dart)
(su

 k m x y)

→ (su

 k (i d m) x y)

| SUCC_L : (∀k:nat; ∀m:fmap; ∀x,y:dart) (∀s:sw)
(su

 k m x y)

→ (su

 k (l s m) x y)

The other sele
tor is exd, of type dart → fmap → Prop, whi
h des
ribes

the existen
e of a dart in a free map. An important variation on su

, the

term of whi
h is too long to print here, is the following:

DEFINITION 7 (ALPHA) : (alpha n x m) is either a k-su

essor of x, or x

itself if there is none:

Definition alpha : nat → dart → fmap → dart := ...

Its main purpose is to turn the predi
ate-based de�nition of su

ession into

an easier-to-use fun
tional one. Provided that a free map satis�es all the 
on-

straints given in the de�nition of gmaps, alpha has the same properties as

the αk. A number of other things related to free maps are also de�ned, in-


luding all the notions given in the previous se
tion (boundaries, 
ells, paths),
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but also an observational equality relation. Being de�ned like lists, free maps

are in
identally ordered. But this order is arti�
ial, as equality between free

maps should be determined only by the darts and sewings in ea
h map, not

the order in whi
h they were added, whi
h is unavoidably taken into a

ount

by the builtin Coq equality, sin
e it is only the synta
ti
al equality between

terms of the same type. Thus we introdu
e our own equality:

DEFINITION 8 (OBSERVATIONAL EQUALITY ON FREE MAPS) : two free

maps are observationally equal if the behaviour of alpha and exd is the

same on both maps

Definition

∼= : fmap → fmap → Prop :=

λm,m':fmap
((∀x:dart) (exd x m) ↔ (exd x m'))

∧ ((∀k:nat; ∀x:dart)
(alpha k x m)=(alpha k x m'))

The de�nition of gmaps using free maps is heavily under
onstrained, whi
h

allows many situations forbidden by the de�nition of gmaps. A dart may be

sewn at any dimension to any dart, in
luding itself or darts not previously

inserted into the map, or to several darts at the same dimension. In order to


apture pre
isely generalized maps, we need to introdu
e a new type, gmap.

5.5 Generalized maps

An obje
t m of type gmap is basi
ally a free map that has been proved to

be well-formed, i.e. to be satisfying the fundamental properties used in the

de�nition of generalized maps of dimension 2 given in the previous se
tion.

The most natural approa
h in Gallina is to de�ne gmap as the type of

pairs of a free map (
alled the support) and a formal proof that the free map

satis�es a well-formedness predi
ate that expresses said fundamental properties

of 2-gmaps. This is a dependent pair, as the se
ond element is a proof of a

proposition parametrized by the �rst element. The well-formedness predi
ate

is de�ned as:

DEFINITION 9 (WELL-FORMEDNESS OF FREE MAPS) : a free map m is

well-formed if, for any k, relation (su

 k m) is an involution, if for any

k≤1 relation (su

 k m) is irre�exive, if relation (su

 0 m)◦(su

 2 m)

is involutive, and if for any k su
h that k≥3 relation (su

 k m) is the

identity:

Definition wf : fmap → Prop

:= λm:fmap
((∀k:nat) (involution (su

 k) m))

∧ ((∀k:nat) k<=1 → (irreflexive (su

 k m)))
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∧ (involutive (
omposition

(su

 0 m) (su

 2 m)))

∧ ((∀k:nat) 3<=k → (identi
al (su

 k m)))

The last 
ondition is added to e�e
tively limit the number of relevant αk

relations to k = 0, 1 or 2: at higher dimensions, all darts are 
onsidered to be

sewn to themselves. Thus, the type of 2-gmaps is:

DEFINITION 10 (GMAP) : an obje
t of type gmap is a pair made up of a

free map m and a proof that m is well-formed, i.e. a term of type (wf m) :

Indu
tive gmap : Set

:= mkg : (∀m:fmap; ∀w:(wf m)) gmap

Also spe
i�ed is a sele
tor to get the �rst element of the pair, 
alled gsupport:

gmap → fmap.

Now we have a type that, by 
onstru
tion, exa
tly en
ompasses 2-gmaps.

However, this type is harder to handle than free maps when proving theorems,

as there is no (useful) stru
tural indu
tion s
heme on this type; being deprived

of indu
tion really hurts, so we had to �nd some kind of indu
tion s
heme

ourselves. To do so, we used another 
ommon de�nition of generalized maps.

5.6 Sewn-
ell maps

Generalized maps are often de�ned in a re
ursive and in
remental manner,

using a simple-
ell-sewing operation that we note sm, of type nat → fmap

→ dart → dart → fmap [33℄ [34℄. The integer is the dimension of the

sewings, and the dimension of the a�e
ted simple 
ells plus 1. For instan
e

(sm 2 m x y) 2-sews ea
h dart of free map m in the simple 1-
ell in
ident to

x to the 
orresponding dart in the simple 1-
ell in
ident y. More pre
isely, x

is sewn to y, and any dart x' in the simple 1-
ell in
ident to x is sewn to the

dart obtained by following from y one of the paths that lead from x to x'.

Figure 6 shows what sm does on simple examples.

Free maps built using only sm are said to be well-
onstru
ted. More pre
isely,

a well-
onstru
ted map is built by:

• starting with the empty map;

• adding all the darts;

• making all 0-sewings with sm;

• making all 1-sewings with sm;

• making all 2-sewings with sm.

Well-
onstru
tedness is expressed in a predi
ate. The type of sewn-
ell maps is
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(sm 2 m x y)
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Fig. 6. Simple 
ell sewing at dim. 0,1,2,3


alled smap . Like gmap , smap is the set of pairs 
omposed of a support

free map and a proof term of well-
onstru
tedness of the support.

The main advantage of smap is that su
h a map is built in an in
remental

manner, whi
h allowed us to prove a useful indu
tion s
heme for this type.

It roughly states that if a property is true for a map without sewings and is

preserved by sm, then it is true for any smap.

Our a
tual Coq spe
i�
ation is more general than what is shown here, in that

well-formedness and well-
onstru
tedness are parametrized by a dimension,

allowing us to work with gmaps of any dimension. Our �rst major result

in this spe
i�
ation is that any gmap support is observationally equal to

a smap support (at any dimension), whi
h means that well-
onstru
tedness

amounts to well-formedness, order of insertions and sewings aside. Thus, we

have formally proved that the two usual de�nitions of generalized maps are

indeed equivalent.

From a pra
ti
al point of view, it allows us to swit
h between the gmap types

at will while proving a property, provided it is preserved by observational

equality, whi
h is the 
ase for all geometri
ally meaningful properties. The

main 
onsequen
e is that we now 
an indire
tly reason by stru
tural indu
tion

on gmap , by swit
hing to and then ba
k from smap.

6 Conservative operations

From now on, we fo
us on surfa
es and 2-gmaps. As we explained in Se
t.

3, 
onservative operations are at the 
ore of our proof of the 
lassi�
ation

theorem. Being 
onservative means that they are expe
ted to preserve the set

of subdivided surfa
es. In order to maximize 
on�den
e in the 
onservativity
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of these operations, they are kept as simple, lo
al and 
onstrained as possible.

Building operations on types gmap and smap are very hard to dire
tly

spe
ify: they must turn a dependent pair into another pair, whi
h in part 
on-

sists in turning a proof term into another proof term, something that is quite

di�
ult to perform dire
tly. The te
hnique we use is to spe
ify the e�e
t of

an operation at the simple free map level, then prove a lemma stating that,

provided pre
onditions are satis�ed, the operation preserves well-formedness

(resp. well-
onstru
tedness). The free map operation and lemma are then 
om-

bined to form an operation on gmap or smap. A
tually, the possibility of

using this method to easily build operations on 
omplex types was our main

motivation behind the fmap type.

6.1 Stret
hing of an open vertex stro

We de�ne an open vertex as a vertex in
ident to a boundary. The stret
hing

operation splits su
h a vertex into two verti
es 
onne
ted by an open edge (see

Figure 7). We start by giving the operation in the fmap universe. It makes

y
x

z

x
y

z newy newx

newx newy

x
y

z

stro M x newx newy

stro M y newx newy

Fig. 7. Example of stret
hing of a vertex

with an open edge

use of unsm, the reverse of sm.

DEFINITION 11 (STRETCHING A VERTEX WITH AN OPEN VERTEX) :

let m be a free map and x, newx and newy three darts. This fun
tion rips

the sewings of x at dimension 1, then adds an edge made up of newx and

newy, then 1-sews newy to (alpha 1 x m) and newx to x

Definition stro : fmap → dart → dart → dart → fmap

λm:fmap λx,newx,newy:dart
(sm 1 (sm 1 (sm 0 (i newx (i newy (unsm 1 m x)))

newx newy) newy (alpha 1 x m)) newx x).
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The pre
onditions have two purposes: to ensure �rst the preservation of well-

formedness by the operation, and se
ond the 
onservativity of the operation,

by verifying that the operation is only used to do what it is intuitively supposed

to. A pre
ondition is expressed in one predi
ate.

DEFINITION 12 (PRECONDITION FOR STRETCHING OF AN OPEN VER-

TEX) : let m be a free map and x, newx and newy three darts. These pa-

rameters may be used for open vertex stret
hing if m is of dimension 2, if

x belongs to m and is in
ident to an open vertex, and if newx and newy are

distin
t and do not belong to m:

Definition pre_stro: gmap → dart → dart → dart → Prop

:= λm:gmap λx,newx,newy:dart
(exd x m) ∧ ¬(exd newx m) ∧ ¬(exd newy m)

∧ newx 6= newy ∧ (openvertex m x)

Note that the �rst argument, of type gmap, is used with predi
ate exd,

whi
h expe
ts type fmap. The typing problem is avoided be
ause, using

the 
oer
ion fa
ility, we previously told Coq to automati
ally 
ast gmap into

fmap when needed using gsupport (Se
t. 5.5). Thus, in this formula, (exd

x m) impli
itly stands for (exd x (gsupport m)). This allows us to use free

map operations on gmap in a very natural way. In the same way, smap is

impli
itly 
ast into gmap, and by transitivity into fmap, so we 
an apply

gmap and fmap operations to smap. We 
an now prove with Coq that

this predi
ate ensures preservation of well-formedness:

LEMMA 2 (PRESERVATION OF WELL-FORMEDNESS WITH STRO) : if

pre_stro is satis�ed for a set of arguments, using them for a stret
hing

preserves well-formedness:

Lemma WF_STRO : (∀m:gmap; ∀x,newx,newy:dart)
(pre_stro m x newx newy)

→ (wf 3 (stro m x newx newy))

For spa
e 
on
erns, it is absolutely impossible for us to present here a formal

proof of any theorem, as they are either far too long if given in full detail, or

impossible to follow if abridged.

As a CIC lemma is a
tually a fun
tion that transforms proof terms of the

hypotheses into a proof term of the 
on
lusion, we use the above lemma to

build a gmap from another gmap, thus obtaining a version of stro that

yields a gmap. Note that Coq automati
ally infers the �rst element of the

pair from the se
ond, whi
h is thus the only one to provide:

DEFINITION 13 (STRETCHING AN OPEN VERTEX IN A GMAP) : if

pre_stro is satis�ed for a set of arguments, the lemma WF_STRO is used

to build a gmap pair 
orresponding to the result of stret
hing:

Definition gstro : λm:gmap λx,newx,newy:dart
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(pre_stro m x newx newy) → gmap

:= λm:gmap λx,newx,newy:dart
λp:(pre_stro m x newx newy) (mkg (WF_STRO p))

This is a little te
hni
al, and might be di�
ult to understand for readers not

a

ustomed to this formalism. The point was simply to show how a lemma


an be used to build a 
on
rete obje
t.

All other 
onservative operations are built with the same method: de�ne

the operation on fmap, put all pre
onditions into a predi
ate, prove the

preservation of well-formedness and use this proof to extend the operation to

gmap.

6.2 Removal of an open edge

This is the 
onverse of stro (and as su
h is not pi
tured): it removes unneeded

edges from boundaries. The pre
ondition ensures that the edge itself is open

and that there is another edge on its boundary, so that removing this edge

will not remove the entire boundary.

6.3 Sliding along a boundary

This applies to pla
es in the map where a se
tion of the boundary has been


onne
ted to another edge by 2-sewing that edge to one of the edges of the

boundary. This operation simply sews one of the edges right next to it instead,

intuitively sliding the 2-sewing along the boundary se
tions (see Figure 8,

where x is a dart of the edge that loses its 2-sewings in the pro
ess).

The pre
ondition states that verti
es on either side of the 
onne
ting edge

should be open, and that both sides of the boundary se
tion 
ontain at least

two darts, in order to make sure that no boundary gets suppressed in the

pro
ess and that the 
on�guration is really that of the �gure.

6.4 Merging two fa
es

This operation merges two distin
t fa
es that have at least one 
ommon edge

by removing that edge and 
onne
ting what is left (see Figure 9, where x is

a dart of the removed edge).

The pre
ondition ensures that the two fa
es are indeed distin
t and that both
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x

x

Fig. 8. Example of sliding

x

Fig. 9. Example of merging

of them 
ontain more than one edge (one-edged fa
es do not have anything

left to 
onne
t).

6.5 Absorption of a one-edge fa
e

This operation is the previous one in the 
ase where one (and only one) of

the fa
es is made of a single edge. In that 
ase, the fa
e is simply removed, or

absorbed, by the larger fa
e (see Figure 10, whi
h also shows bump removal,

x

x’

Fig. 10. Example of absorption and bump re-

moval

and where x is a dart of the one-edged fa
e).
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The pre
ondition ensures that the two fa
es are distin
t, that one of them has

a single edge and that the other has more.

6.6 Bump removal

This operation removes a bump, i.e. an edge 
losed on itself, whi
h has no

a
tual relevan
e from a topologi
al point of view (see Figure 10, where x′
is a

dart of the bump). There are no additional pre
ondition.

6.7 Dart renaming

That is the only global operation: it 
hanges the name of all the darts in

the map using a renaming fun
tion of type dart → dart. At some point,

the darts we manipulate will need to bear imposed names to be 
onform to

a normalization. This fun
tion must be inje
tive on the set of darts of the

original map, otherwise some darts will be 
onfused in the resulting map.

6.8 Slitting a vertex

The slitting operation removes extraneous 2-sewings. It rips the 2-sewings

that tie together the two sides of a 
losed edge the end verti
es of whi
h are

respe
tively open and 
losed (see Figure 11, where x belongs to the opened

x
x

Fig. 11. Example of slitting

edge).

The pre
ondition simply 
he
ks that one of the end verti
es is open and the

other 
losed.
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7 Normal maps and the trading theorem

7.1 Normal maps

Now that we have the 
onservative operations, we know pre
isely our topo-

logi
al equivalen
e relation between 2-gmaps. Remember that two 2-gmaps

are topologi
ally equivalent provided one 
an be obtained from the other using

only a 
ombination of any of the eight 
onservative operations while always

satisfying the pre
onditions. Topologi
ally equivalent 2-gmaps subdivide the

same surfa
es.

The next step is to prove that any open 
onne
ted 2-gmap is equivalent to one

of the normal maps Np,q,r. Now we need to pre
isely des
ribe these maps. To

�nd a good 
andidate for Np,q,r, we start with a map that obviously subdivides

a surfa
e with p pun
tures, q handles and r twists. Then we apply as many


onservative operations as possible to it so that it be
omes as small as possible,

making it easier to handle. In the end, we obtain the map on Figure 12. This

0

0e

1

0e

2

0e
3

0e

4

0e

5

0e

1
b q−1

2
b q−1

6
b q−1

7
b q−1

0
b q−1

1
t r−1

2
t r−1

3
t r−1

0
t r−1

0
o

1
o

3
b q−1

4
b q−1

5
b q−1

0 p−2 p−1 0 q−1 0 1 2 r−1
r twisted earsq bridgesp ears

Fig. 12. General form of a normal map

map is made of one open edge (the horizontal upper edge on the �gure) that

represents the mandatory boundary of the map. Then, from left to right,

there are p vial-shaped ear patterns (one for ea
h pun
ture), q larger bridge

patterns (one for ea
h handle) and r twisted ear patterns (one for ea
h twist).

The names of the patterns are inspired by Gri�ths [29℄.

A normal map is made of a single 
y
le of alternately 0- and 1-sewn darts,

some of whi
h have been 2-sewn to form the patterns. Ea
h ear pattern is

made of 6 
onse
utive darts. The darts of the k-th ear pattern are denoted eki ,
with i between 0 and 5, a

ording to the order they appear on the 
y
le. This

means that in ear pattern k, ek0 and ek5 are 2-sewn, as well as ek1 and ek4, and
ek2 and ek3 are both 2-sewn to themselves.

In the same way, the 8 darts that make up bridge k are denoted bki , with i
between 0 and 7, and the 4 darts that make up twisted ear k are denoted tki ,

26



with i between 0 and 3. The two darts that form the mandatory boundary are

denoted o0 and o1. Thus, map Np,q,r 
ontains 2 + 6p+ 8q + 4r darts.

7.2 Normal maps in Coq

Normal maps are entirely 
hara
terized by p, q and r. Thus, in Coq, we should

be able to build a normal map, of type smap , using only the three natural

numbers. The darts in normal maps will be obtained using the idg dart gen-

erator. Thus, dart o0 and o1 are a
tually (idg 0) and (idg 1), eki is (idg

(2+6k+i)), bki is (idg (2+6p+8k+i)), and tki is (idg (2+6p+8q+4r+i)).

To build the map, we write re
ursive Coq fun
tions that deal with one step of

the 
onstru
tion pro
ess of a normal map:

• (dartmap n) yields a the 0- smap only 
ontaining the darts (idg 0) to

(idg (n-1));

• (edgemap n) yields the 1- smap made by taking (dartmap 2n) and 0-

sewing every (idg 2k) dart to (idg (2k+1)). This is a 
olle
tion of n

edges;

• (
y
le n) yields the 2- smap made by taking (edgemap n) and 1-sewing

every (idg (2k+1)) to (idg (2k+2)), with a spe
ial 
ase with (idg

(2n-1)) that is instead 1-sewn to (idg 0). Thus, we obtain a 
y
le of

alternately 0- and 1-sewn darts;

• (addears p q r) yields (
y
le (1+3p+4q+2r)) in whi
h the edge in
ident

to ek0 is 2-sewn to ek5 using sm, for ea
h k under p. This takes 
are of the

ear patterns;

• (addbridges p q r) yields (addears p q r) in whi
h the edge in
ident

to bk0 is 2-sewn to bk5, and the edge in
ident to bk2 is 2-sewn to bk7, for ea
h k

under q. This takes 
are of the bridge patterns;

• (makenmap p q r) yields (addbridges p q r) in whi
h the edge in
ident

to tk0 is 2-sewn to tk1, for ea
h k under r. This takes 
are of the twisted ear

patterns, thus 
ompleting the normal map.

The normal maps are indeed determined only using the numbers p, q and r.
Thus, in our Coq spe
i�
ation, the type nmap of normal maps is simply

the type of triplets of natural numbers, with sele
tors named nmp, nmq and

nmr. We then use the 
oer
ion fa
ility to automati
ally 
ast su
h triplets into

smap when needed using fun
tion makenmap. Thus, we 
an transparently

use nmap obje
ts as free maps.
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7.3 The trading theorem

As we mentioned in the introdu
tion, part (i) of the 
lassi�
ation theorem is

split again into two parts. The �rst half (the normalization theorem) states

that any map belongs to one of the 
lasses (p, q, r), the se
ond half (the trading

theorem) identi�es all 
lasses to 
lasses with r ≤ 2. We �rst deal with the latter,

whi
h is mu
h simpler. In our spe
i�
ation, the trading theorem states that:

Theorem 12 Normal map Np,q,r is equivalent to Np,q+1,r−2 if r > 2.

Thus, this theorem a
tually allows to trade two twists in a normal map for

an additional handle, provided there were at least three twists in the original

map.

Our proof is very straightforward, it is in fa
t similar to the one in [25℄. It

simply 
onsists in applying 10 
onservative operations to Np,q,r and proving

that the result is Np,q+1,r−2. The operations are the following, with new darts


alled i0, i1, i2 and i3:

(1) stret
h the vertex in
ident to t23 with an open edge made of i0 and i1;
(2) slide the 2-sewing of t03;
(3) stret
h the vertex in
ident to t21 with an open edge made of i2 and i3;
(4) slide the 2-sewing of t01;
(5) slide the 2-sewing of t13;
(6) slide the 2-sewing of t23;
(7) slide the 2-sewing of t03;
(8) remove the open edge in
ident to t02;
(9) remove the open edge in
ident to t12;
(10) rename the darts properly (as dart names in a normal map are imposed).

Figure 13 illustrates these operations. Ea
h sub�gure shows the result of the

operation written in the 
aption. A dashed line illustrates what the latest

operation did, by pointing to the new edge in 
ase of vertex stret
hing, pointing

to the vertex where a removed edge stood before, or by showing the movement

of the sewing in 
ase of sliding. The ik are generated using idgen, a fun
tion

based on idg that yields darts that do not belong to any given map. All steps

are formally handled in a similar way. Let us use the �rst step as an exemple.

7.4 Step 1

There are three substeps for ea
h step:
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(a) Two views of the starting normal

map

(b) Step 1:

stret
h the

vertex in
ident

to t
2
3

(
) Step 2: slide the

2-sewing of t
0
3

(d) Step 3: stret
h the

vertex in
ident to t
2
1

(e) Step 4: slide the

2-sewing of t
0
1

(f) Step 5: slide the

2-sewing of t
1
3

(g) Step 6: slide

the 2-sewing of t
2
3

(h) Step 7: slide the

2-sewing of t
0
3

(i) Step 8: remove the

edge in
ident to t
0
2

=

(j) Step 9: remove the edge in
ident to t
1
2

Fig. 13. Steps of the trading theorem

(1) prove that the map obtained after the previous step satis�es the pre
on-

dition for the next operation. Here, there is no previous step, so we take

the starting normal map:

LEMMA 3 (PRECONDITION FOR STEP 1 IS SATISFIED) : stret
hing

the vertex in
ident to t23 with two darts that do not belong to m is

allowed in any normal map with r > 2:
Lemma pre_step1 : (∀m:nmap)
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(nmr m)>2 -> (pre_stro m x (idgen m 0) (idgen m 1))

(2) perform the operation:

DEFINITION 14 (RESULT OF STEP 1) : perform the step

Definition step1 : λm:gmap λp:((nmr m)>2)

(gstro (pre_step1 p))

(3) build a library of lemmas des
ribing exd's and alpha's behaviours after

appli
ation of step1. It will be used in the following steps.

After step 9, the map has the same stru
ture as Np,q+1,r−2, but the darts are

named di�erently, thus we add a renaming step so that the names mat
h.

On
e this tenth step is over, we prove that the resulting map is observation-

ally equal, and thus topologi
ally equivalent, to Np,q+1,r−2. Combining all the

intermediate results, we 
on
lude that Np,q,r is equivalent to Np,q+1,r−2, thus

ending our formal proof of the trading theorem. We would like to stress that

the whole proof was entirely 
he
ked by the Coq system.

8 The normalization theorem

8.1 Quasi-normal maps

This theorem is mu
h more di�
ult to prove. Informally, it states:

Theorem 13 Any open 
onne
ted 2-gmap is topologi
ally equivalent to one

of the normal maps.

Our proof is in two parts that are joined together using a new subtype of

smap, the type of quasi-normal maps.

De�nition 14 A smap m of dimension 2 is (p, q, r)-quasi-normal if:

• map Np,q,r is in
luded in m, i.e. all its darts and sewings are in m, with the

ex
eption of the 1-sewings of o0 to α1(o0), whi
h is repla
ed here by another

1-sewing, thus 
onne
ting this normal se
tion of m to the rest of m;

• m has only one fa
e;

• all verti
es in m are in
ident to a boundary;

• m 
ontains no bump.

A quasi-normal map is essentially a map that �
ontains� a normal map and

that also has several useful properties. A very important dart in a quasi-normal

map is what we 
all the limit dart, denoted ld: it is the dart that 
omes right

after the normal part of the qmap. Figure 14 shows one su
h map and its

limit dart. Surrounded on the �gure is the non-normal part of the quasi-map.
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Fig. 14. Example of (1,1,1)-quasi-normal

map

The type of quasi-maps is qmap, it is de�ned mu
h like previously as a

triplet of a smap, a nmap, and a proof that the smap satis�es the

above properties with the nmap as the normal se
tion.

The two parts of the normalization theorem are:

• the 
leaning theorem, that states that any open 
onne
ted 2-gmap is equiv-

alent to a quasi-normal map the normal se
tion of whi
h is N0,0,0;

• the absorption theorem, that in
rementally �grows� the normal se
tion of

the quasi-normal map, until it en
ompasses the whole map.

In the following subse
tions, we give a sket
h of the proofs.

8.2 N÷therian indu
tion

Both parts are proved using the proof te
hnique 
alled N÷therian indu
tion,

whi
h is an extension of stru
tural indu
tion. Coq uses a variant of this te
h-

nique based on the builtin notion of a

essibility.

Let E be any set and R be a binary relation in E: R ⊆ E × E. As usual, for
any x, x′ ∈ E, we denote x R x′

the fa
t that there exists an R-ar
 from x to

x′
. We say that x is a R-prede
essor of x′

and x′
is a R-su

essor of x.

Intuitively, an element x ∈ E is said to be R-a

essible if and only if any

des
ending R-
hain beginning by x, i.e. x = x1, x2, . . . , xk, xk+1, . . . with

x2 R x1, . . . , xk+1 R xk, . . ., is �nite. The Cal
ulus of Indu
tive Constru
tions
expresses that with the notion of a

essibility.

De�nition 15 An element x ∈ E is said to be a

essible by R, or R-
a

essible, if all its R-prede
essors are themselves R-a

essible. If x has no

R-prede
essor, x is said to be immediately R-a

essible.
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It is 
lear that, if x is immediately R-a

essible, then it is R-a

essible. For in-
stan
e, let E = N be equipped with the usual natural stri
t order <. Then, 0 is
immediately <-a

essible sin
e it has no prede
essor, 1 is <-a

essible be
ause
its only <-prede
essor is 0, 2 is <-a

essible be
ause its only <-prede
essor is
1, et
. Then all the natural numbers are <-a

essible.

If E0 is the set of the elements of E whi
h are immediately R-a

essible, the
set of all the elements of E whi
h are R-a

essible is exa
tly (R∗ E0), where
R∗

as usual denotes the re�exive transitive 
losure of R.

De�nition 16 The set E equipped with R is said to be well-founded, or

N÷therian, if every x ∈ E is R-a

essible.

If the 
ontext is 
lear, it is simply said that R is well-founded or N÷therian.

In this 
ase, if we want to prove a property Px for any x ∈ E, the N÷therian
indu
tion prin
iple states that we 
an assume �for free� that Py is true for any

y ∈ E su
h that y R x.

In our example, N equipped by < is N÷therian, sin
e E0 = {0}, and (<∗

{0}) = N. Then the N÷therian indu
tion prin
iple for (N, <) 
orresponds to
the 
lassi
al �general indu
tion�: to prove Pn for any n, assume Pk for k < n
and use that to prove Pn.

Then, the following result 
an immediately be proved using N÷therian indu
-

tion.

Theorem 17 (E,R) is N÷therian if and only if, for every x ∈ E, there is

no in�nitely des
ending R-
hain from x.

In our map 
ase, E is a type of maps, smap for the 
leaning part, qmap for

the absorption part. Proving that the pro
esses realizing the two parts by map

transformations are �nitely terminating needs suitable well-founded relations

on these map types.

8.3 The 
leaning theorem

This theorem states that any open 
onne
ted 2-gmap m is equivalent to a

quasi-normal map whose normal se
tion is N0,0,0. The proof of the 
leaning

theorem is split in �ve lemmas, ea
h showing that m is equivalent to a map

that satis�es one more property than in the previous step:

(1) step 1: m is equivalent to a map 
ontaining N0,0,0;

(2) step 2: like step 1, but the map also 
ontains no bump;

(3) step 3: like step 2, but the map also 
ontains no one-edged fa
e;
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(4) step 4: like step 3, but the map also 
ontains only one fa
e;

(5) step 5: like step 4, but the map also only has open verti
es, thus is quasi-

normal.

Step 1 simply renames two darts of an open edge into o0 and o1, thus 
reating
the normal se
tion of the map: indeed, normal map N0,0,0 only 
ontains these

two darts, so in order to be 
ontained by a map, that map only needs to


ontain the open edge made of o0 and o1.

The four other steps ensure one of the other properties of the quasi-maps

by repeatingly applying a 
onservative operation. The 
onvergen
e is proved

by N÷therian indu
tion. The 
orresponding relation is denoted <cd, whi
h is

proved well-founded in smap .

De�nition 18 For any smap m and m′
, the relation m <cd m

′
is satis�ed

if the number of 
losed darts is stri
tly lower in m than in m′
.

In step 2, we want to prove that any open 
onne
ted 2-gmap m has an equiv-

alent 
ontaining N0,0,0 with no bump. We �rst use the indu
tion prin
iple to

assume that there is su
h an equivalent for any map m′ <cd m. Then we test

whether there is a bump in m. If not, then m itself is the sought equivalent. If

there is one, we remove it with 
onservative operation rmbump and show that

the resulting map m′′
is smaller than m w.r.t. <cd. Applying the indu
tion

hypothesis to m′′
, we �nd a map with the good properties that is an equiv-

alent of m′′
, but then also of m by transitivity of equivalen
e, thus �nishing

the proof of step 2.

The other three steps, step 3 to step 5, work in the same way, respe
tively

with operations absorb, merge and slit. Figure 15 shows ea
h step of the

o1 o2 o1 o2 o1 o2

o1 o2o1 o2

step 1 step 2

step 3 step 4 step 5

Fig. 15. Example of 
leaning


leaning starting from a sample 2-gmap. It is 
lear that the number of 
losed

darts in the 
urrent map is stri
tly de
reasing from step 2 to step 5.
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8.4 The absorption theorem

This is by far the most di�
ult part of the proof, and also 
learly the least

intuitive. It only deals with quasi-normal maps. It is stru
tured like step 2 of

the 
leaning theorem, ex
ept that it uses another relation, and that instead

of simply 
he
king whether the map 
ontains bumps, it 
omputes whi
h of

fourteen di�erent 
lasses the map belongs to, applying a di�erent series of


onservative operations ea
h time.

The 
lass of the map depends on its 
on�guration near ld. For example, one


orresponds to maps where ld is open, another to maps where ld is in
ident to

a twisted ear pattern, another to maps where ld is in
ident to a bridge pattern,
et
., with numerous sub
ases, that are too long to present in this paper. Then,

for ea
h 
lass among the fourteen, an appropriate treatment is applied.

We prove that the pro
ess 
onverges to a normal map by N÷therian indu
tion

on a ve
tor 
omputed from the map. As ea
h step in the absorption pro
ess

lexi
ographi
ally de
reases the ve
tor, and that the smallest ve
tors are shown

to only belong to normal maps, we infer that any qmap 
an be normalized in

a �nite number of steps. The ve
tor is made of 8 natural numbers v0, v1, . . . , v7
whi
h we use to de�ne well-founded relation <q on qmap :

De�nition 19 For any qmap m and m′
, m <q m

′
is satis�ed if the ve
tor

of m is lexi
ographi
ally smaller than that of m′
.

Ea
h 
omponent vi is a 
ount of darts with a spe
i�
 feature, or a number

re�e
ting a 
hara
teristi
 of ld in the 
urrent map, e.g. a distan
e to a well


hosen other dart. For instan
e, v0 is the number of darts in the non-normal

se
tion, v3 is the number of darts between ld and the 
losest 
losed dart x, v1
is 0 if x ∈< α1 ◦α0 > (ld) and 1 otherwise, et
. We remind that ld is the dart

that sits between the normal and non-normal parts of the qmap.

These are values that were empiri
ally devised so that they worked well for our

indu
tive proof. More spe
i�
ally, the vi are 
arefully 
hosen so that a single

step in the absorption pro
ess will de
rease one of the vi without altering the
vj for j < i. Unfortunately, the 
omplexity of the absorption pro
ess makes

the de�nition of vi themselves quite lengthy and 
omplex. It is ne
essary to

delve into the details of the theorem and its proof in order to understand

why these vi do indeed evolve this way, whi
h makes it hard to des
ribe them

su

in
tly; even harder would be to give an intuitive idea as to why they

behave as expe
ted.

The only simple one to grasp is v0, the number of darts in the non-normal

se
tion. We prove that all steps of the absorption theorem either de
rease the

number of su
h darts or leave it un
hanged and de
rease some other vi. Fur-
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thermore, enough v0-de
reasing steps will be applied so that it will eventually

rea
h 0, the v0 for a normal map. Similarly, we show that no step in
reases

v1 unless v0 de
reases at the same time, and so forth for the other vi. In the

end, all these results taken together prove that ea
h step lexi
ographi
ally

de
reases the ve
tor until v0 = 0, whi
h by de�nition 
hara
terizes normality.

In other words, ea
h step brings the map 
loser to normality.

The strength of these proofs is to 
ertify that these 
ompli
ated operations are

indeed 
orre
t and a
tually lead to the desired result, whi
h 
annot be ensured

when writing a 
onventional program. For more detail about the steps and the

ve
tor, refer to [11℄.

9 Con
lusion

In this arti
le, we have shown the basi
 stru
ture of a Coq spe
i�
ation of

generalized maps, whi
h topologi
ally model 
ombinatorial surfa
es. We then

have shown how we used it to adapt and formally prove the �rst part of the

famous theorem of 
lassi�
ation of surfa
es applying to subdivisions instead,

the subdivisions being 
lassi�ed a

ording to the set of surfa
es that they

subdivide. This shows that the Coq system 
an a
tually be used in this �eld,

although the size of our development (over 100,000 lines) [12℄ suggests that it


ould bene�t from dedi
ated ta
ti
s and 
ommands to relieve the user a little.

We now have a dire
tly usable powerful spe
i�
ation of generalized maps that


an be used for further studies. The most obvious use would be to extend our

proofs in three dire
tions:

- First, we must prove the se
ond part of our 
lassi�
ation theorem whi
h as-

serts that any two subdivision 
lasses are not 
onfused. Following [26℄ for the


losed surfa
es, we must establish the link between the open surfa
e equiva-

len
e and the triple (p, q, r) with r ≤ 2, whi
h 
an be admitted as the invariant

of an open surfa
e. We must prove that our elementary transformations pre-

serve it, what seems easy for p and q, but more di�
ult for r, for whi
h the

orientability notion must be deepened. Then, two distin
t normal forms ne
-

essarily 
orrespond to inequivalent surfa
es. A useful task will be to formally

establish the relationship between q and χ, the Euler-Poin
aré 
hara
teristi

(Se
t. 4), whi
h is often used to 
lassify surfa
es.

- Se
ond, we have to in
lude the 
losed subdivisions. For instan
e we 
ould as-

sume, like Gri�ths does for surfa
es, that pun
turing in a 
losed subdivision,


onservatively transforming it, then 
losing ba
k the pun
ture, is 
onservative

as a whole.

- Third, we 
ould spe
ify embeddings in order to obtain surfa
e 
lassi�
ation

from subdivision 
lassi�
ation. This work involves to 
onsider 
lassi
al notions

of topology, with 
ontinuity, homomorphisms, homology, probably by using an
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axiomati
 system for the real numbers.

This spe
i�
ation of gmaps 
ould probably also be used as a basis for work in

the dis
rete geometry �eld, where ea
h voxel 
ould be represented by a 
ubi


map, whi
h would then be 
ombined to form dis
rete surfa
es [2℄. We 
ould

also use the program extra
tion fa
ility of Coq to automati
ally generate from

our proof a program that 
omputes the (p, q, r) of any gmap. Moreover, a

reasonable but still nontrivial modi�
ation of our proof 
ould yield a 
erti�ed

program listing all the 
onservative operations used during normalization.

Finally, our long-term proje
t is to revisit the foundations of the 
omputational

geometry, using 
ombinatorial map 
on
epts for topology and Coq for the

spe
i�
ation and extra
tion of 
erti�ed fon
tional algorithms, rather than to

produ
e them from s
rat
h, like in [22℄, without proof of 
orre
tness, or like

[21℄, with proof of total 
orre
tness. However, it will be ne
essary to study

the insertion of numeri
al 
omputations and round-o� errors in su
h a formal

proof framework, what always remains a di�
ult 
hallenge in theorem provers.
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