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Summary. Many data structures are available for the representation and
manipulation of meshes. In the context of algorithms that need to traverse
local neighborhoods, topological structures are of particular interest. Many
such existing structures are specialized for the representation of objects of a
given dimension like surface or volume meshes. Many of them find their roots
in combinatorial maps, a mathematical model for the representation of the
topology of the subdivision of objects, which is consistently defined in any
dimension. We present a practical implementation of combinatorial maps that
competes with modern state-of-the-art data structures in terms of efficiency,
memory footprint and usability. Among other benefits, developers can use a
single consistent library to manipulate objects of various dimensions.

1 Introduction

Mesh data structures are of fundamental importance in many fields such as
surface modeling, mesh generation, finite element analysis, geometry process-
ing, visualization or computational geometry. A mesh is the cellular decom-
position of geometric objects such as curves, surfaces or volumes. We are
interested here in topological models that provide neighborhood relations be-
tween the cells of the decomposition (vertices, edges, faces, volumes) as this
information is mandatory for many algorithms in the mentioned application
fields. Our goal is to propose a library that is able to represent consistently
objects of different dimensions composed of arbitrary cells (polygonal faces,
polyhedral volumes). It should also: provide an efficient way to traverse the
cells and their neighborhood; allow to store data with the cells (preferentially
defined at execution time and not at compilation time); allow to efficiently
modify the connectivity of the mesh even in highly dynamic settings. We do
not aim to provide a generic framework in which the internal structure can be
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tailored for an application specific needs by avoiding for example unnecessary
neighborhood relations or restricting representable cells to simplices.

A classical representation of cells and their incidence relations is a graph
known as Incidence Graph [8]. It is an oriented graph whose nodes correspond
to the cells and where each oriented arc connects a k-cell to a (k-1)-cell to
which it is incident. A very wide variety of objects can be represented by
such a graph: non-manifolds or manifolds, orientable or not, with or without
boundary. Unfortunately, some neighborhood queries such as finding all the
(k+1)-cells incident to a given k-cell are resolved at a prohibitive cost and
require to traverse the whole structure. To obtain better performances, arcs
of opposite direction connecting each k-cells to its incident (k+1)-cells are
usually also stored.

However, many application fields only consider manifolds. The special-
ization to this more restricted domain allows to derive simpler and more
efficient structures. Among those, some structures such as half-edges [19] for
surfaces or facet-edges [6] for volumes have gained a huge popularity. Many
publicly available C++ libraries like OpenMesh [1], Surface mesh [17], Open-
VolumeMesh [12] and the Polyhedron object in CGAL [4] are based on these
structures. Even if they are efficient, they are all designed as separated li-
braries which causes difficulties to handle objects of different dimensions in
a consistent way. From the user point of view, this separation implies a new
learning process for each structure.

All these structures are actually equivalent and find their roots in the no-
tion of combinatorial map described in 1960 by Edmonds [9]. It is a math-
ematically defined structure that represents the subdivision of surfaces. It
has later been extended by Lienhardt to represent the subdivision of volumes
[13]. At the same time, Brisson mathematically studied in [2] the ordering
of cells around lower dimension cells, thus defining the cell-tuple algebraic
structure. This structure is equivalent to the generalized combinatorial maps
(G-maps) proposed by Lienhardt [14] and allows to represent the subdivision
of n-dimensional manifolds.

These models are dimension-independent and rely on a single element
along with a simple set of relations. All the information about the cells and
their incidence and adjacency relations is modelized within this simple model.
All neighborhood traversals are resolved in optimal time (linear in the
number of traversed cells) without having to maintain any additional infor-
mation. As in other topological models, there is a total separation between
the topological structure of the subdivision and the attributes that can
be associated to the cells.

The mathematical foundation of combinatorial maps mainly gave rise to
its usage in theoretical fields such as formal specification [7] and geometrical
theorem proving [3]. Recently, a CGAL [4] package implementing combina-
torial maps has been released. However, as presented in Sect. 4, its perfor-
mances are way beyond those of existing libraries. In order to promote the
usage of combinatorial maps in a wider variety of communities, we present
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Fig. 1 A cellular decomposition of a 2-dimensional object and its incidence graph

the CGoGN /sigOñ/ library. It is a practical implementation of combinatorial
maps that proposes an efficient index-based implementation that competes
with modern existing libraries. Furthermore, extensions like multiresolution
maps presented in [11, 18] are also available.

2 Combinatorial Maps

In this section we give a presentation of combinatorial maps and G-maps.
Their definition is intuitively derived from the incidence graph structure.
Fig. 1 shows a simple cellular decomposition of a 2-dimensional object and
its incidence graph that we use as a running example in our definition.

2.1 From Incidence Graph to Cell-Tuples

In a n-dimensional cellular decomposition, a cell-tuple is defined as an or-
dered sequence of cells (Cn, Cn−1, ..., C1, C0) of decreasing dimensions such
that ∀i, 0 < i ≤ n, Ci is incident to Ci−1. In other words, a cell-tuple cor-
responds to a path in the incidence graph from a n-cell to a vertex. Fig. 2
shows the iterative construction of all the cell-tuples generated by the cellular
decomposition of Fig. 1.

Adjacency relations are defined on the cell-tuples: two cell-tuples are said
to be i-adjacent if their path in the incidence graph share all but the i-
dimensional cell. For example, (F1, E2, V1) and (F1, E2, V2) are 0-adjacent.
In the context of the cellular decomposition of a quasi-manifold, it has been

F1,E2,*

F1,E5,*

F1,E2,V1 F1,E2,V2

F1,E5,V5 F1,E5,V4

Fig. 2 Iterative construction of the cell-tuples corresponding to the cellular de-
composition of Fig. 1
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Fig. 3 The top figure shows the G-map corresponding to the cellular decomposition
of Fig. 1. Darts are represented like the cell-tuples in Fig. 2; α0, α1 and α2 functions
are represented respectively by blue, green and red links. The three bottom figures
illustrate the sets of darts representing the vertex, edge and face of dart d.

shown [2, 15] that these n+1 adjacency relations put the cell-tuples in a one-
to-one relation (except for the n-adjacency at the boundary of the object
where cell-tuples do not have any mate). Based on these definitions, G-maps
have been proposed as a model for the representation of the cellular decom-
position of n-dimensional quasi-manifolds.

2.2 Generalized Maps

Generalized maps encode a cellular decomposition with a set D of abstract
elements called darts that are in one-to-one correspondance with the cell-
tuples. A set of n+1 functions αi : D → D, 0 ≤ i ≤ n are defined based on the
i-adjacency relations of the cell-tuples. Fig. 3 shows the G-map corresponding
to the cellular decomposition of Fig. 1. Following the previously mentioned
properties of i-adjacencies on cell-tuples, αi functions are involutions, i.e.
functions such that ∀d ∈ D,αi(αi(d)) = d. Combinatorial constraints express
the correct assembly of cells along their boundary. For αi functions, these
constraints are expressed as follows: ∀i, j, 0 ≤ i < i+ 2 ≤ j ≤ n, αi ◦ αj is
an involution. If the G-map is constructed from the incidence graph of the
decomposition of a quasi-manifold – a set of d-cells glued along (d-1)-cells –
then those constraints are automatically satisfied.

The original cells are thus decomposed with their incidence relations into
a dimension-independent set of a unique abstract entity. In order to bring
back the notion of cell, the following two observations are a good starting
point:

• each dart identifies a set of n cells of different dimension, i.e. those con-
tained in the corresponding cell-tuple.

• each k-cell is represented by a set of darts, i.e. all the darts whose corre-
sponding cell-tuple contains this cell.
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Fig. 4 Left: the darts of the G-map have been partitionned in two sets, each
corresponding to one of the two orientations of the object. Right: the oriented
combinatorial map yielded by dart d; φ1 = α1 ◦ α0 and φ2 = α2 ◦ α0 relations are
represented respectively by blue-green and blue-red links.

Fig. 3 illustrates these notions. Starting from the same dart d, depending
on how it is interpreted, one can build the set of darts that represent its
vertex, edge or face. Within each of these sets, any dart equally represents
the corresponding vertex, edge or face.

Now we only need a way to construct these sets of darts. Following the
previous definitions, αi(d) is the dart that represents the same cells as d
except from the i-dimensional cell. All the other αj , j �= i functions will
lead to darts that share the same i-cell as d. It follows that starting from a
dart, the set of darts representing the same i-cell can be obtained by applying
successively all the functions that maintain the i-dimensional cell unchanged,
i.e. {αj, j ∈ {0, 1, ..., i−1, i+1, ..., n}}. Such sets of darts are formally defined
as orbits, noted: < α0, ..., αi−1, αi+1, ..., αn >. For example in Fig. 3, the
vertex, edge and face of d are defined respectively by the following orbits:
< α1, α2 > (d), < α0, α2 > (d) and < α0, α1 > (d).

2.3 Oriented Combinatorial Maps

A G-map is able to represent orientable or non-orientable quasi-manifolds.
However, a representation domain restricted to orientable objects is sufficient
in many application contexts. In this case, a more compact model can be
used. The orientability of a given G-map can be determined with a binary
coloring process of its darts following this rule: a dart of a given color can
only be linked to darts of the other color. Starting with an arbitrary dart,
if the whole object can be colored this way, then the object is orientable.
In this case, the darts of the G-map are partitionned in two sets Dblack and
Dwhite of equal cardinality, each one representing one of the two orientations
of the object. For any dart d ∈ D,< φ1, ..., φn > (d) with φi = αi ◦ α0 is
the set of darts corresponding to the orientation yielded by d. For example,
if d ∈ Dblack, then < φ1, ..., φn > (d) = Dblack. Fig. 4 shows the application
of this process.

As they represent the exact same object, keeping the two orientations of an
orientable G-map is not necessary and one of these sets can be dropped, lead-
ing to a twice more compact representation. One orientation of an orientable
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G-map is actually a combinatorial map, defined as a set of darts D along
with n functions φi : D → D, 1 ≤ i ≤ n, with φi = αi ◦ α0. The φ1 function
is a permutation that links the ordered vertices around oriented faces. The
φi, i ≤ 2 ≤ n functions are involutions, as stated by the constraint expressed
above on the αi involutions. From a constructive point of view, each of these
involutions allows to glue pairs of i-dimensional cells along their common
(i-1)-dimensional boundary cell.

The orbits that define the cells are the following. For cells of dimension
i ≥ 1, the sets of darts that represent the cells are defined by the orbit
< φ1, ..., φi−1, φi+1, ..., φn >. Like for G-maps, starting from any dart, all
the functions that maintain the i-dimensional cell unchanged are applied. For
vertices, the orbit is < φ1 ◦ φ2, ..., φ1 ◦ φn >.

2.4 Embedded Maps

Maps and G-maps only define the topology of the cellular decomposition of
quasi-manifolds, i.e. the cells – represented implicitly by sets of darts – and
the neighborhood relations between them. In order to consistently attach
attributes to cells, any data attached to a cell has to be linked to all the
darts of this cell. The most flexible solution is to associate an index to each
cell. Any data associated to this index is then associated to the corresponding
cell.

To model this idea, additional functions can be defined on maps. For each
i, 0 ≤ i ≤ n, embi : D → N, is the function that associates to each dart
the index of its i-dimensional cell. In order for a map to be well embedded,
the following constraint must be satisfied: ∀d, d′ ∈ D, d′ ∈ orbiti(d) =⇒
embi(d

′) = embi(d). In other words, for each dimension, all the darts of the
same orbit are associated to the same index.

2.5 About Existing Data Structures

In the context of surface meshes, the half-edge data structure [10] is certainly
the most widespread. Each half-edge stores a link to the next and previous
half-edge within its oriented face, a link to the opposite half-edge of the
adjacent face, a link to the incident vertex and a link to the incident face.
Edges are usually not explicitly represented. Considering volume meshes,
several data structures have been proposed such as facet-edge [6] or handle-
face [16]. Basically, the incident face of the half-edge data structure is called
a half-face and stores a link to an opposite half-face of the adjacent volume.

The half-edge data structure can actually be expressed as a 2-dimensional
oriented map. Each half-edge is represented by a dart; the next half-edge link
is encoded by φ1; the previous half-edge link by φ−1

1 ; the opposite half-edge
link by φ2; the target (or source) incident vertex link by emb0; the incident
face link by emb2. Data structures for volume meshes can be expressed as
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3-dimensional maps. The latter can be seen as 2-dimensional maps glued
along common faces by φ3 involution. It encodes the opposite half-face link
but without needing an extra entity (i.e. the half-face) to store the relation.

The fundamental difference of combinatorial maps is that a dart is not
the half of an edge. Following our presentation of combinatorial maps, a
dart is to be considered as a cell-tuple. This implies that the model is able to
represent consistently objects of any dimension and that each dart represents
at the same time a vertex, an edge, a face, a volume, ... of the mesh. Actual
cells are explicited only through their indexing and associated attributes.
The indexing of the cells of any dimension is completely optional. If the cells
of one or even all dimensions are not indexed, the cellular decomposition
and its topology are still completely defined. Indeed, cell enumeration and
neighborhood traversals are performed using exclusively the darts and their
relations.

3 Implementation

CGoGN (Combinatorial and Geometric modeling with Generic
N-dimensional Maps) [5] is a C++ library that provides an efficient index-
based implementation of n-dimensional combinatorial maps and G-maps.

3.1 Basic Containers

Maps and G-maps both rely on darts as their basic entity. According to the
model and dimension, each dart has to store a variable number of topological
relations (links to other darts) and indices of the embedded cells. For each
embedded dimension, a variable number of custom attributes have to be
associated to the indices of the cells.

V F
DART

VERTEX

Fig. 5 Containers of a 2-dimensional combinatorial map with vertex and face
attributes. The dart container stores φ1 and φ2 links to other darts and V and F
links to the embedded vertices and faces.
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GenericMap

Fig. 6 Map and G-map classes inherit from a common generic class that man-
ages basic data structures. Embedded versions of these classes ensure the proper
embedding of the maps during topological operations.

Following these requirements, a map can be encoded as a set of attribute
containers: one for the darts and one for each embedded dimension. Each
container stores a set of attributes of any type that can be dynamically added
or removed. All the attributes of a given container have the same number of
records, each record being identified by an index. In particular, darts are
identified by indices. Fig. 5 illustrates the containers of a 2-dimensional map
with embedded vertices and faces. The dart container has a φ1 and a φ2

attribute that store for each dart d the indices of φ1(d) and φ2(d) within the
dart container. It also has V and F attributes that store for each dart the
indices of its associated vertex and face within the vertex and face attributes
container.

We have chosen to store attributes in chunk arrays which are sets of chained
arrays. It allows to allocate additional memory while leaving all existing ele-
ments in place. Entries that are marked as deleted are automatically skipped
and used in priority when a free index is requested. The size of a chunk
can be parameterized to balance between memory fragmentation and early
memory allocation. Access to the nth cell of the array is achieved by divi-
sion and modulo operations to retrieve the good chunk and the good index
within this chunk (the chunk size is a power of 2 to optimize those arith-
metic operations). As we discuss in Sect. 4, this memory management policy
has several advantages, in particular when representing meshes with dynamic
connectivity.

3.2 Generic Map and Maps Hierarchy

The containers are managed by an object called GenericMap that is the base
class of all map objects. Fig. 6 shows the hierarchy of map classes. [G]Map1,
[G]Map2 and [G]Map3 represent respectively 1, 2 and 3-dimensional [G-]maps.
The constructor of each class creates the dart attributes corresponding to the
topological relations of its model. For example, Map1 creates the φ1 attribute,
Map2 adds the φ2 attribute, and so on. They provide accessors to these rela-
tions, and a set of classical operators. For example, Map2 provides operators
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such as newFace, cutEdge, flipEdge or splitFace. To allow the develop-
ment of generic algorithms, Map and GMap provide the same set of operators.
The Embedded[G]Map{1,2,3} classes overload the topological operators and
ensure that the maps remain properly embedded (see Sect. 2.4). Listing 1
shows how our running example is created in an embedded 2-dimensional
map.

Listing 1. Initialization of our running example in a 2-dimensional map.

EmbeddedMap2 map;
Dart square = map.newFace (4);
Dart triangle = map.newFace (3);
map.sewFaces (square , triangle );

3.3 Attributes Management

Attributes are accessed through AttributeHandler objects. Such objects are
defined by the data type of the attribute and the dimension of the cell. Spe-
cialized classes (like VertexAttribute) parameterized only by the data type
are available for a more concise syntax. Upon creation of the first attribute
of a given cell, the corresponding container is initialized and a new attribute
is added in the dart container to store the indices.

The GenericMap provides functions to add, remove and get attributes as
illustrated in listing 2. Read and write access to the values of an attribute
for a given cell is achieved using the bracket operator. The parameter of this
bracket operator can be either an index or a dart: an index provides direct
access to the corresponding entry; a dart gives access to the entry pointed by
the dart’s embedding for this dimension. The end of the listing shows a loop
over the darts of the triangle face in order to set the position and normal of
all its vertices. Of course, as we detail in the following, a more convenient
way to traverse local neighborhoods is provided.

Listing 2. Creation, removal, access to attributes with AttributeHandler objects.

VertexAttribute <Vec3 > pos = map.addAttribute <Vec3 , VERTEX >("position ") ;
VertexAttribute <Vec3 > normal = map.addAttribute <Vec3 , VERTEX >("normal") ;
FaceAttribute <float > area = map.addAttribute <float , FACE >("area") ;
FaceAttribute <Vec4 > color = map.addAttribute <Vec4 , FACE >("color") ;

map.removeAttribute(color) ;

VertexAttribute <float > kmax = map.getAttribute <float , VERTEX >("kmax") ;
if(!kmax.isValid ())

// the attribute does not exist

area[triangle ] = 2.0f ;

Dart d = triangle ;
do
{

pos[d] = Vec3(...) ;
normal [d] = Vec3(...) ;
d = map.phi1(d) ;

} while(d != triangle ) ;
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3.4 Markers

The CGoGN library provides a marking mechanism that is needed by many
algorithms. Any entry of any container can be marked. A CellMarker can
be declared for any cell dimension by giving the appropriate template pa-
rameter. When a CellMarker is instanciated, a free marker is reserved. It is
automatically released at the destruction of the object. As shown in listing
3, a CellMarker can mark, unmark and check if a cell is marked. Similarly to
the bracket operator of AttributeHandler, these functions take as parame-
ter either an index or a dart.

The DartMarker class is dedicated to the marking of darts. A DartMarker

also disposes of the mark, unmark and isMarked functions. The difference lies
in the possibility to mark or unmark any orbit of a given dart at once using
the markOrbit function. As the traversal of an orbit is different according to
the dimension of the map and the underlying model (map or G-map), this
function uses a generic orbit traversal. This is achieved using C++ polymor-
phism: each map or G-map class provides a set of foreach dart of XXX(d,f)

functions that apply a functor f on all the darts of the XXX orbit of d. The
appropriate function is used by the DartMarker to mark the orbit according
to the actual type of the map.

Listing 3. Markers usage.

CellMarker <FACE > cm(map) ;
cm.mark(square) ;
if(cm.isMarked (square ))

cm.unmark(square) ;

DartMarker dm(map) ;
dm.markOrbit <VERTEX >( triangle ) ;

3.5 Boundary

Maps and G-maps can handle boundaries by the means of fixed point topo-
logical relations. For example, in a 2-dimensional map, the φ2 relation of the
darts of boundary edges can point to themselves like illustrated in Fig. 4. The
same idea holds in any dimension: in a volume mesh, darts of the boundary
faces are fixed points of the φ3 relation.

However, introducing such fixed points alter the integrity of some basic
traversals. Let’s take the example of the traversal of all edges incident to a
vertex in a 2-dimensional map. In Fig. 7, the darts of the vertex of d are
highlighted in bold. The standard way of traversing this orbit is to compose
the φ1 and φ2 relations to go from one dart to the next around the vertex
in an ordered way. This simple and efficient process is not applicable in the
presence of fixed points. Even if the traversal is tweaked to take the fixed
points into account, it misses one of the incident edges (the valence of the
vertex is 3 but it is composed of only 2 darts).
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In CGoGN, we have chosen to represent only closed maps (i.e. without any
fixed point). Objects boundaries are represented using a special boundary
marker. 2-dimensional maps can feature boundary faces, and 3-dimensional
maps can feature boundary volumes. The right image of Fig. 7 shows how
the same example mesh is represented with an additional boundary face in
orange. The vertex of d is now composed of 3 darts and the traversal of
incident edges can be done efficiently without missing any edge.

3.6 Global Traversals

The CGoGN library provides a convenient way to traverse all the elements
of the represented maps. The simplest global traversal consists in traversing
all the darts of the map, as illustrated in listing 4.

Listing 4. Darts traversal.

for (Dart d = map.begin (); d != map.end(); map.next(d))
{

// do something with d
}

Any container can be traversed in the same way. For example, going
through all valid indices of the vertex container and accessing the data of
some of its attributes is achieved like shown in listing 5. A single attribute
can also be traversed by using directly the begin, end and next functions
that are available on the AttributeHandler.

Listing 5. Container traversal.

AttributeContainer& cont = map.getAttributeContainer<VERTEX >() ;
for (unsigned int i = cont.begin (); i != cont.end(); cont.next(i))
{

position [i] = ... ;
normal [i] = ... ;

}

A fundamental global traversal consists in passing through each topological
cell exactly once. This can be performed using a global traversal on darts
combined with an appropriate marking. The CGoGN library provides a class
called TraversorCell to perform this kind of traversals. During the traversal,
each topological cell is visited through one of its darts. No assumption can be

d d

Fig. 7 The CGoGN library only represents closed meshes. Boundaries are managed
through the marking of boundary cells.
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done on which dart of the concerned orbit is returned. As they are not part of
the actual mesh, boundary cells are not returned by these objects. In listing
6, all the vertices of the map are traversed. The MAP template parameter
defines the type of the map object.

Listing 6. Cells traversal.

TraversorCell <MAP , VERTEX> trav(map) ;
for (Dart d = trav.begin (); d != trav.end(); d = trav.next())
{

// do something with d
}

TraversorCell objects make an internal use of markers. If the traversed
cell is currently embedded, a CellMarker is used. Otherwise a DartMarker

is used. This choice is done for performance reasons as there are much less
indiced cells to mark and unmark than darts (for example 6 darts for 1 vertex
in a typical 2-dimensional map).

In the context of meshes with fixed connectivity, a much faster way to
traverse the mesh is provided. The enableQuickTraversal<CELL> function
creates an attribute in the CELL container that stores one dart for each cell of
the mesh. If it is available, a corresponding TraversorCellwill automatically
iterate on this attribute and return successively a dart of each cell without
having to traverse all the darts of the map or to mark/unmark anything,
leading to a huge speed-up of the traversal. Topological operators that modify
the connectivity of the mesh do not update this attribute. However, it can be
manually updated by a call to updateQuickTraversal<CELL>, for example
after a subdivision or simplification process. If this feature is not desired
anymore, it can be disabled with a call to disableQuickTraversal<CELL>

which removes the corresponding attribute.

3.7 Neighborhood Traversals

The CGoGN library provides a set of objects to handle neighborhood traver-
sals. Starting from a given cell, there are two kinds of neighborhood traversals:
incident cells and adjacent cells. In the following, the letters V, E, F and W
respectively stand for vertex, edge, face and volume.

Incident Cell Traversals

A cell b is said to be incident to a cell a if b belongs to the boundary of a or
if a belongs to the boundary of b. TraversorDXY objects are provided with
D the dimension of the traversed map, X ∈ {V,E, F,W} the type of starting
cell and Y ∈ {V,E, F,W}\{X} the type of the aimed incident cells. Listing 7
illustrates the traversal of all the faces incident to the vertex of a given dart
d in a 2-dimensional map.
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Listing 7. Traversal of all faces incident to a vertex.

Traversor2VF <MAP > trav(map, d) ;
for(Dart it = trav.begin (); it != trav.end(); it = trav.next())
{

// do something with it
}

In dimension 2, all these traversals go through a set of incident cells that
are ordered around the central cell. They are clearly executed in a time linear
in the number of traversed cells. Fig. 8 shows an example mesh for some 2-
dimensional incident cell traversals. In dimension 3, incident cell traversors
centered on an edge or a face are ordered, while those centered on a vertex or
a volume are not. Non-ordered traversals are resolved using a local flooding
algorithm with marking that is also linear in the number of reached cells. In
this case, no assumption can be made on the order in which the incident cells
are returned. Fig. 9 shows some of the 3-dimensional neighborhood traversals
on a regular hexaedral grid. In both cases, boundary cells are not returned
by TraversorDXY objects.

Adjacent Cell Traversals

A cell b is said to be adjacent to a cell a by a cell c if dim(a) = dim(b) �=
dim(c) and ∃c such that a is incident to c and c is incident to b. The CGoGN
library provides TraversorDXXaY objects where D is the dimension of the
traversed map, X ∈ {V,E, F,W} is the type of starting and aimed cells and
Y ∈ {V,E, F,W} \ {X} is the type of the cell through which the adjacency
is defined.

Listing 8. Traversal of all vertices adjacent to a vertex through an edge.

Traversor2VVaE <MAP > trav(map, d) ;
for(Dart it = trav.begin (); it != trav.end(); it = trav.next())
{

// do something with it
}

Listing 8 illustrates the traversal of all the vertices adjacent to the vertex
of a given dart d through a common edge in a 2-dimensional map. As for inci-

Traversor2VF

d

Traversor2EF Traversor2FV

Fig. 8 Some 2-dimensional incident cell traversals. All cases are initialized with
the same dart d (in green) interpreted as a vertex (left), an edge (middle) and a
face (right). A dart of each reached cell (in red) is successively returned by the
Traversor2XY.
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Traversor3VE

Traversor3VF Traversor3EW
Traversor3FW

Traversor3WE

Fig. 9 Some 3-dimensional incident cell traversals

Traversor2VVaF

d

Traversor2FFaV

d

Traversor2EEaV

d

Fig. 10 2-dimensional adjacent cell traversals. All cases are initialized with the
same dart d (in green) interpreted as a vertex (left), an edge (middle) and a
face (right). A dart of each reached cell (in red) is successively returned by the
Traversor2XXaY.

dence queries, adjacency queries are resolved in a time linear in the number of
traversed cells. Fig. 10 shows an example mesh for some 2-dimensional adja-
cent cell traversals. Boundary cells are also not returned by TraversorDXaYY

objects.

Quick Traversals

Following the same approach than for global traversals, quick traversals can
be enabled for any of the incidence or adjacency neighborhood traversals. For
example, a call to enableQuickIncidenceTraversal<MAP,C1,C2> creates an
attribute in the C1 container that stores for each cell a set of darts containing
one dart per incident C2 cell. If it is available, this attribute is automatically
used by the corresponding TraversorDXY, leading to a huge improvement of
traversal performances. This feature is of course more adapted to the case of
a static connectivity. The attribute can be updated or removed when desired
by a call to the appropriate update or disable function.

4 Comparison

In this section, we compare the CGoGN library with other widely used
data structures: CGAL (Polyhedron and Combinatorial Maps), OpenMesh
and Surface mesh for surface meshes representation; CGAL (Combinatorial
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Armadillo model
165k vertices / 330k triangles

Chinese Dragon model
655k vertices / 1.3M triangles

Buddha model
45k vertices / 195k tets

Fig. 11 Surface and volume meshes used in the evaluation

Maps) and OpenVolumeMesh for volume meshes representation. To evaluate
and compare the performances of CGoGN to other structures, we use the
benchmarks proposed in [17] and [12]. They consist in algorithms that evalu-
ate fundamental features of these libraries such as iterating through elements
of the mesh, neighborhood queries or connectivity modifications.

In the context of surface meshes, we use the following tests:

• Circulator : for each vertex, enumerate its incident faces then for each face,
enumerate its vertices.

• Barycenter : center the mesh at the origin by first computing its barycenter
and then substracting it from each vertex.

• Normal : compute and store face normals, then compute and store vertex
normals as an average of incident faces normals.

• Smoothing: move each non-boundary vertex to the barycenter of its adja-
cent vertices.

• Subdivision: perform a
√
3 subdivision step by splitting faces at their cen-

ter, computing old vertices positions and flipping old edges.
• Collapse: split all faces at their center and then restore the original con-

nectivity by collapsing each new vertex into one of its neighbours.

In the context of volume meshes, we use the following tests:

• Circulator : for each vertex, enumerate its incident volumes then for each
volume, enumerate its vertices.

• Circulator2 : for each vertex, enumerate its vertices adjacent through a
common volume.

• Barycenter : compute and store the barycenter of each volume.
• Smoothing: move each vertex to the barycenter of its adjacent vertices.
• Subdivision: perform a 1-to-4 split of each volume of a tetrahedral mesh

by inserting a central vertex.
• Collapse: perform a series of edge collapses by selecting each time the

shortest edge of the mesh.
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Fig. 12 Time performance for the surface (top) and volume (bottom) benchmarks.
Values are expressed relatively to the performance of CGoGN. CGAL (list) and
CGAL (vector) are the list-based and array-based versions of the Polyhedron ob-
ject in CGAL. CGAL LCC is the Linear Cell Complex structure of CGAL, i.e. a
CGAL Combinatorial Map with a point associated to each vertex. CGoGN (quick)
is CGoGN library with appropriate incidence or adjacency quick traversals enabled.

Fig. 11 shows the surface and volume meshes used in our benchmarking
process. The obtained performances are presented in Fig. 12.

In the surface benchmarks, performances of CGoGN library are generally
close to the most efficient. The CGAL (list) and CGAL LCC data struc-
tures, the only ones that are not index-based, obtain the worst performances.
When it is possible, activating the appropriate incidence or adjacency quick
traversals improves CGoGN performance beyond that of other libraries.

In the volume benchmarks, CGAL LCC data structure still obtains glob-
ally poor performances. The Circulator test uses incidence relations that are
stored in the OpenVolumeMesh (OVM) data structure and traversed dynam-
ically in CGoGN library. When activating quick traversals, the performances
of CGoGN library are equivalent or even better than that of the OVM data
structure. The same observation can be made on the Smoothing test. The
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Circulator2 test uses adjacency relations that are not directly available in
the OVM data structure. In this case, the OVM data structure and CGoGN
library obtain similar performances. When activating quick traversals, the
CGoGN library largely outperforms the OVM data structure. In algorithms
that modify the connectivity of the mesh, the CGoGN library performs better
than other tested libraries.

An advantage that can be pointed out is that combinatorial maps do not
force the storage of any particular incidence relation. All the topological in-
formation is encoded within darts and their relations. Neighborhood caching
is proposed optionally by activating the desired quick traversals. As a result,
all possible incidence or adjacency queries can always be computed, and any
of them can be accelerated on demand.

In the context of interactive applications like physical simulation, view-
dependant refinement or modelization tools, the represented meshes often
present a highly dynamic connectivity where topological cells are regularly
created and deleted. The memory management policy of the CGoGN library,
using chunk arrays and reusing deleted entries (see 3.1), makes it particularly
adapted to this context. Data structures like OpenMesh or Surface mesh rely
on one-block contiguous containers. The holes created by the deletion of ele-
ments are not automatically reused and new elements are always created at
the end of the containers after an appropriate memory pre-allocation (which
causes a recopy of all existing elements). In the case of dynamic meshes, the
amount of memory to pre-allocate in these structures is hard to anticipate.
As new elements are added at the end of the containers, the available ca-
pacity is going to be reached eventually. Furthermore, as holes are created
in the containers, the global performance of traversals is reduced along with
the contiguity of active elements. Garbage collection algorithms are proposed
to compact the elements in the containers and recover good performances.
However, this operation also frees unused memory, which is going to be re-
allocated again for further cell creations. Moreover, garbage collection is a
costly process whose optimal triggering is not obvious.

We have conducted benchmarks consisting in repeatedly applying batches
of splits and collapses to point out these behaviors. We observed that unlike
other libraries, the performances and memory usage of the CGoGN library
in this context remain constant.

5 Conclusion

The CGoGN library provides an efficient and easy to use implementation of
combinatorial maps. It allows to represent and manipulate objects of differ-
ent dimensions within a common framework. Algorithms written for maps of
a given dimension can even benefit from the features of maps of lower dimen-
sions. The total separation between the topological structure of the mesh and
the cells attributes allows a flexible and optional management of the latter.
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Based on [11, 18], the CGoGN library also allows the represention and ma-
nipulation of multi-resolution meshes. Given all these features, the proposed
index-based underlying structure allows performances that are comparable
or better than those of existing libraries. The memory management policy
makes it particularly well suited to applications where the connectivity of the
mesh is highly variable.

We already developed several high-level applications based on the CGoGN
library like surface deformation, remeshing, progressive meshes or volume
meshes subdivision. We are also developping a plugin-based application that
allows to share CGoGN based developments into one common place.
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