
A unified structure for crowd simulation

Thomas Jund
tjund@unistra.fr

Pierre Kraemer
kraemer@unistra.fr

David Cazier
david.cazier@unistra.fr

Abstract
Realistic simulation of crowds is an important
issue for the production of virtual worlds for
games, entertainment or architectural and urban
planning. Difficult issues need to be addressed
such as collision avoidance and the handling of
dynamic environments.

In this paper, we present a unified structure
for the simulation of complex urban environ-
ments. We propose a topological multiresolu-
tion model supporting different levels of details,
allowing efficient proximity querying and com-
patible with real-time rendering and hierarchical
path planning. A fine exploitation of the multi-
scale aspect of the underlying model allows to
achieve the same efficiency as the fastest exist-
ing methods. The generality of the approach
allows the simulation to be executed on any 2-
manifold and the unified approach eases the han-
dling of dynamic environments.

1 Introduction

Human beings are naturally able to walk through
a dense crowd while searching their way in com-
plex urban environments. Simulating the be-
haviour of humans is a difficult challenge and a
key feature for the production of accurate virtual
worlds. To be realistic, an autonomous agent
must adapt its trajectory all along the simulation.
Basically the progression of an agent is guided
by global objectives but has to be adapted fre-
quently to take into account dynamic obstacles
and other navigating agents.

To achieve this, a virtual human has to be
aware of its environment at different scales. It
should have an overview of the whole ground
cartography in order to plan its path or to search

its way if noa priori knowledge is assumed. Dy-
namic obstacles or more generally changes in
the environment (e.g. doors opening, variations
in the density of agents) should be taken into ac-
count on the fly to adjust the trajectories. At last,
every virtual human must constantly be aware of
the other agents operating in the vicinity to adapt
its behaviour to their presence.

Thereby, obtaining a realistic simulation with
thousands of autonomous agents requires to ad-
dress several issues such as hierarchical path
planning, proximity queries and collision avoid-
ance. Each of these processes need specific opti-
mizations to obtain real-time execution and ren-
dering times. Finally, to support interactive al-
terations in the virtual world, the internal rep-
resentations used by each process should sup-
port on the fly transformations and allow effi-
cient propagation of the changes.

The main contribution of this paper is a uni-
fied framework for real-time simulation of the
navigation of thousands of autonomous agents
in complex urban environments. It includes a
cellular representation of the environment that
supports different levels of detail (including se-
mantic levels), compatible with classical render-
ing algorithms. This same representation is used
to efficiently track the agents within the environ-
ment. The environment is then adaptively sub-
divided depending on the crowd density to pro-
vide constant time proximity queries. The cel-
lular decomposition of the environment is also
implicitly used as a dual graph to perform hier-
archical path planning.

In the following, section 2 presents related
works and discusses their advantages and lim-
itations in this context. Section 3 describes our
multiresolution model and the generation of the
environment. Section 4 details how efficient



proximity queries are achieved in this frame-
work. Finally, section 5 presents experimental
results and some comparisons.

2 Related Works

Many published studies have addressed the
problem of modelling the behaviour of au-
tonomous agents with the reproduction of phe-
nomena such as the formation of queues or hu-
mans interactions in crowds [1, 2, 3]. Among
them, one mainly distinguishes three kinds of
approaches. They are differentiated by their
ability to control the behaviour of agents or
groups of agents, the number of entities that
can be processed simultaneously, but also by the
kind of proximity requests they require.

2.1 Collision free navigation

Potential fields based works define repulsive and
attractive forces associated to agents, goals and
obstacles [4, 5, 6]. These approaches are well
suited for large simulations and allow the for-
mations of lanes or flocking. Their main limita-
tion is probably the difficulty to finely tune their
parameters and the lack of tools to describe in-
dividual social behaviours.

Rule based methods have been widely used
for virtual humans. In [7] a 2D regular grid is
used to handle reactions of the agents and store
information about probable paths or possible be-
haviours when reaching some destination. In [8]
and [9] proximity queries are used to search the
closest set of agents. Then, depending on the lo-
cal configuration of agents and visible obstacles,
specific rules of navigation apply. These ap-
proaches offer intuitive control and the obtained
behaviours are realistic. However, the result of
their combination is difficult to predict and may
cause artefacts to appear.

Primarily used in the robotics field, the ve-
locity based methods are more robust. Velocity
obstacles have been introduced in [10]. They
provide necessary and sufficient conditions for a
robot to select a velocity avoiding collision with
moving obstacles. This method have been ex-
tended to the case of multiple agents with the
notion of Reciprocal Velocity Obstacle [11] and
optimized in [12] to increase robustness.

This paper focuses on achieving efficient
proximity queries in general and on dynamic en-
vironments. We thus rely on an external library
to evaluate the behaviour of agents. We use the
RVO2 library (Reciprocal Collision Avoidance
for Real-Time Multi-Agent Simulation) [11] to
compute the velocity of the agents. However
our framework is generic enough to operate or
support other methods for the management of
agents behaviour and reactive navigation.

2.2 Proximity queries

All the mentioned methods need specific data
structures and algorithms to query the agents
or obstacles close to a given position. Space
partitioning trees and bounding volumes hierar-
chies have been widely used to speed up prox-
imity queries. Recent works [11, 6, 12] use
lists of polygons and distinctkd-trees to retrieve
fixed obstacles or moving agents. These kind
of data structures provide efficient access, but
suffer from heavy update costs when the scene
changes. That makes them inappropriate for in-
teractive or dynamic environments.

Image-based approaches exploit a rasteriza-
tion of the scene in which agents register. Two
kinds of grids are mostly used. Many works use
static fine grid whose cell sizes are related to
the thickness of agents. To test the existence of
collisions with static or moving obstacles, each
agent queries the grid by accessing a subset of
the cells in its vicinity. In [13], only the points
on the direct path of the agent are tested. In [9],
all points in a region representing a cone of visi-
bility are tested. In both cases, using dense grids
allows precise computations but limits the size
of the considered neighbourhood to achieve real
time performances. That prevents these methods
from taking into account distant obstacles.

Following the approach presented in [14],
spatial hashing can be exploited to register mov-
ing agents in an implicit grid. To limit the num-
ber of queries and updates on the hash table, the
cell size must be greater than the interaction dis-
tance between agents. This thereby certifies that
the cells in the immediate neighbourhood of a
given agent contains all possible interacting ob-
jects. This approach has shown impressive per-
formances for collision detection between de-
formable objects. However, the high number of



accesses to the hash table prevents its usage in
dense simulations where the concurrent memory
accesses become a bottleneck.

Other approaches calculate or maintain a
neighbourhood graph between agents or obsta-
cles. In [8] and [15], a Delaunay triangulation
of the agents positions is computed at each time
step. This graph is filtered with visibility in-
formation before obtaining a list of the nearest
neighbours of an agent. In [4], a Kinetic Data
Structure is introduced. Its goal is to maintain
a Delaunay triangulation between agents that
is updated after moving each agent. Finally,
the adaptive road map presented in [16, 17]
stores a neighbouring graph whose links are up-
dated based on physical models. These three
approaches exploit the maintained graphs to
achieve both collision avoidance and path plan-
ning. They are well adapted to sparse crowds,
but the computations or updates of those graphs
grow heavily with the density of the crowd.

2.3 Path planning

Most works in crowd simulation uses the A*
graph search algorithm or variants optimized for
hierarchical models. In [9] a set of hierarchical
maps is used: an accessibility map associated
with a perception and a path map. The latter
includes a quadtree map which supports global
and long-range path planning and a fine grid for
short-range paths. A hierarchical path planning
[18], optimized for grid-based maps is used.

The works presented in [8] and [15] use se-
mantic road maps built from the spatial subdi-
vision of the environment. A visibility graph is
extracted from a Delaunay triangulation of the
scene and simplified through abstraction of the
dead end and passage paths (i.e. nodes with de-
gree lower than 3). This graph is then used for
hierarchical path planning.

Our multi-scale topological model implicitly
encodes a neighbourhood graph of the scene that
can be exploited in the same way to achieve hi-
erarchical path planning. As this paper is mainly
focused on proximity queries, the path planning
aspect will not be detailed further.

Figure 1: A procedurally generated city where
10000 autonomous agents navigate by
following a series of goals.

3 A unified structure

Crowd simulation imposes the use of optimized
data structures for environment representation,
path planning and proximity queries. As it
has been previously reminded, these structures
include discrete grids, visibility graphs, road
maps, hash maps and often hierarchical repre-
sentations like quadtrees, BSP orkd-trees.

Using multiple data structures lower the con-
sistency of the representation, in particular when
geometrical or topological modifications of the
environment occur. Moreover, the tree based
structures need to be reconstructed each time
their nodes are moved or the scene is trans-
formed. Such frequent updates hinder the
achievement of real-time performances for large
simulations.

Moreover, when working with complex envi-
ronments that may contain bridges, tunnels or
multiple floors, the representation of the ground
by 2D grids is no longer possible. In approaches
like the one presented in [5], the environment
has to be cut in several planar parts linked to-
gether in a graph.

We propose a more generic representation
of the environment based on a multiresolution
model. This structure supports any 2-manifold
environment and provides all the needed infor-
mation for rendering, path planning and prox-
imity querying with multi-scale capabilities.

Our main structure is encoded by a multireso-
lution 2-map [19] which is a multiresolution ex-
tension of the well-known half-edge data struc-
ture. The latter is a topological model that can
represent the cellular decomposition of any ori-



entable 2-manifold. It proposes a light weight
data structure along with optimal neighbour-
hood queries between the cells.

The multiresolution extension inherits its
flexibility and efficiency. Any polygonal mesh
can be represented on every resolution levels of
the hierarchy. Each level is a 2-map and neigh-
bourhood queries are resolved in optimal time,
whatever the considered resolution level. We
use the CGoGN library [20] that provides an ef-
ficient implementation of these models, tools to
manipulate the topology of meshes and an at-
tribute manager.

An important property of combinatorial maps
is that they simultaneously encodes meshes and
their duals. Thus, for each level, a map describes
the faces it contains, their adjacency relations
and therefore, implicitly, their neighbourhood
graph. An edge between two faces is also a link
between two nodes of this graph. Thus, implic-
itly, when an edge of the environment is marked
as an obstacle, the corresponding link cannot be
followed by the path planning algorithm.

When the environment is modified, the topo-
logical neighbourhoods are processed simulta-
neously with the geometry without requiring
specific updates. Modifications include for in-
stance the subdivision or merging of faces or
any other manipulation with an interaction tool.
In other words, a multiresolution map defines a
hierarchy of graphs that naturally supports dy-
namic transformations.

In our simulations, the environment is com-
posed of open spaces and fixed obstacles that are
partitioned into vertices, edges and faces. Fig-
ure 1 shows a typical simulation of a city where
the buildings are obstacles and the agents have
to find their ways in the streets. All cells, includ-

Figure 2: Left: a urban environment generated
from OpenStreetMap data. Right:
multiple superimposed floors.

ing the buildings walls and roofs, are encoded in
the global manifold mesh of the scene.

The topology of these meshes can be arbi-
trary. They may contain holes (whose edges
must be marked as obstacles) and be non-planar,
i.e. contain bridges, tunnels or more generally
be any 2-manifold. The agents can navigate
through all the faces and edges of the scene, ex-
cept those that were explicitly marked as obsta-
cles (walls, roofs, doors, parts of the scenery,
etc.). As shown in figures 2 and 3 our system
supports the existence of superimposed floors,
can import data from geographic databases or
simulate a crowd walking on any kind of sur-
faces.

Figure 3: Left: 1500 agents navigating on a
planet. Right: 6000 agents navigating
on a torus knot.

Non-flat environment requires to adapt the be-
haviour algorithm, namely in our case the RVO2
library. Indeed, the computation of an agent new
velocity at each time step is intrinsically solved
as a 2D problem and the implicit parametriza-
tion given by a flat environment is no more avail-
able.

We use a local parametrization to flatten the
neighbourhood of an agent with respect to its
viewing distance. As shown in the following,
this neighbouring region can be limited to the
faces incident to the one that contains the agent.

4 Proximity querying

At each time step of the simulation, each agent
has to sense the environment for nearby neigh-
bours and obstacles. This process is a critical
point for the global efficiency of the simulation
and is generally not addressed in papers dealing



with crowd simulation systems that mainly fo-
cus on collision avoidance algorithms.

In our system, the environment partition itself
is used as an accelerating structure for proxim-
ity queries. Every face maintains the set of the
agents it contains and of nearby obstacles. The
agents can thus scan their vicinity by traversing
the topological structure starting from their face
and accessing the sets in adjacent faces. Main-
taining this information is a fundamental aspect
of our framework and requires fine optimiza-
tions. As an autonomous entity, each agent is
given the task to register in the cell it lies in. For
this purpose, each agent is tracked in the parti-
tion using the algorithm described in [21].

4.1 Optimizing neighbourhood traversals

Computing the new direction and velocity of
an agent to avoid collisions requires to gather
all the agents lying within a given distance.
This set is obtained by querying the environ-
ment for the agents lying in the neighbouring
faces. Even if the underlying combinatorial
model provides efficient queries, naively gath-
ering all these agents requires a breadth-first
traversal of regions included within a defined
visibility distance around each agent.

To optimize these proximity queries, we limit
this search to the one-ring of the face that con-
tains the agent –i.e. the faces that share at least
one vertex with it (figure 4). If we assume an
upper bound to the degree of faces, it ensures
that the number of traversed faces is kept within
a constant limit and thus improves the overall
complexity of the algorithm.

Figure 4: Face one-ring and vertex one-ring
border.

An agent can lie anywhere in its face. To en-
sure that this optimization does not lead to miss
any close agent, all the visible neighbours of an
agent must lie in the one-ring of its face. This

Figure 5: Left configuration is valid: all the pos-
sible viewing area of any contained
agent is in the one-ring of the central
face. Right configuration is not valid:
parts of the possible viewing areas are
outside the one-ring of the face.

leads to the following shape constraints that all
faces have to respect.

For a faceF to be valid, the Minkowski sum
of F and the viewing area of agents must not
get beyond the one-ring ofF (figure 5). This
constraint can be expressed in a vertex-centered
way. Let the border of the one-ring of a vertex
be the set of the edges of the faces incident to
the vertex minus the set of edges directly inci-
dent to the vertex (figure 4). For each vertex,
the point-segment distance to each edge of its
one-ring border has to be greater than the agents
viewing distance.

4.2 Optimizing memory access

At each time step, the set of agents contained in
a face is accessed not only by the agents it con-
tains but also by all the agents contained in the
faces of its one-ring. At the same time, this set is
only updated when an agent leaves or enters the
face. As we measured in real simulations, these
events are an order of magnitude less frequent
than the read accesses. Moreover, all the agents
of a given face perform at each time step the ex-
act same neighbourhood traversal and memory
access.

In order to reduce the number of access to the
data structure and at the expense of some mem-
ory space, we chose to duplicate some informa-
tion. Each face of the environment stores not
only the set of contained agents, but also the set
of agents contained in its one-ring. The agents
will then find, with only one read access, all the



information they need to explore their neighbour
configuration. The effect is a dramatical reduc-
tion of the number of access to the data structure
that would otherwise become a bottleneck for
the successive treatment of thousands of agents.

The maintenance cost is slightly increased but
updates only occur when agents cross edges.
When entering a new faceFn, an agent first un-
registers ascontained from its source faceFs

and asneighbour from its one-ringF adj
s . Then it

registers in the reached face ascontained and in
its one-ringF adj

n asneighbour, as illustrated in
figure 6. An agent usually enters a new face af-
ter crossing a single edge. In this case, the agent
only has to unregister from the faces belonging
to F adj

s − F adj
n , and to register in the faces be-

longing toF adj
n − F adj

s . The tracking system is
able to discriminate between single or multiple
edge crossing.

Figure 6: Updating neighbourhoods: an agent
registered in face6 and neighbour
faces(3, 4, 5, 7, 8) moves into face3.
It unregisters from face6 and as neigh-
bour of facesF adj

6
−F

adj
3

(3, 7, 8) and
registers in face3 and as neighbour of
facesF adj

3
− F

adj
6

(1, 2, 6).

4.3 Bounding neighbours number

For each agent, among all the neighbours lying
in its face and its one-ring, only those included
in its viewing distance are considered by the col-
lision avoidance system. Filtering this set of
neighbours is usually done by sorting the can-
didates by increasing distance and pruning the
result to keep only the ones that satisfy the view-
ing condition. Moreover, avoidance algorithms
usually consider only a limited number of these
selected neighbours. As the number of agents
contained in each face – and therefore in their
one-ring – increases, so does the complexity of

this filtering process. To support real time per-
formances even in presence of dense situations,
this number should be bounded.

Representing the environment with small
faces limits the number of potential neighbours.
As a negative result, the memory cost would
be greatly increased and the probability for an
agent to cross an edge while moving would be
higher, leading to more information updates.

We propose an adaptive routine that subdi-
vides high density regions and simplifies them
back when the density declines (figure 7). As
shown in the following experimentations, this
algorithm shows good performances while ex-
hibiting a limited memory overcost.

Focused agent

Considered agents

Distant agents

Saved distance

computations

Viewing area

Figure 7: The subdivision of densely filled cells
reduces the number of distance com-
putations each agent has to perform.

When the number of agents registered in a
face and its one-ring exceeds a given number
Dh, the cell is subdivided and the registrations
of the agents it contains are updated. As part of
the multiresolution topological model, this sub-
division process can be repeated as many time
as needed by the simulation.

The shape constraint exhibited in section 4.1
can be ignored in this case. Indeed, this con-
straint is only meaningful in the coarsest mesh to
ensure that all neighbours within the interaction
distance are considered. When a face is subdi-
vided, the resulting faces are included in it. If
Dh is chosen in concordance with the number
of neighbours considered by the behaviour al-
gorithm, then no close agent can be missed.

When the number of agents registered in a
face and its one-ring becomes smaller than a
given numberDl, a simplification is performed.
The face gets back its previous shape and the
contained agents update their registrations. This
simplification process keeps the memory cost of
the environment in control and reduces the prob-
ability for agents to cross edges.



Figure 8: Circle-1000 scenario. With our method the mesh automatically gets refined and coarsened
depending on the density of agents; any subdivision model can be used.

5 Experimentations

In this section, we present experimentations
demonstrating the performance of our system
compared to other approaches used for collision
avoidance. We set up several scenarios to test
our crowd simulation system in different config-
urations.

In the Circle-N example (figure 8),N agents
are regularly distributed along a circle and aim at
their diametrically opposed position. This scene
implies a high density of agents near the center.
In the Crossing-N example,N agents navigate,
half of them walking from the left to the right
of the scene, the other in the opposite direction.
Here again high densities of agents are obtained
in the middle of the scene. In the City-N exam-
ple,N agents cross a city-like environment (fig-
ure 1) following random paths. Our framework
is able to run this simulation for 10000 agents
at 30 fps on a standard desktop computer using
only one core.

5.1 Time performance

We present here the performance of our method
compared to thekD-tree based method used in
the RVO2 library [11] and to a static regular grid
at a coarse and a fine resolution using our prox-
imity queries algorithm. Figure 9 shows on the
left the computation time of the Circle-N simu-
lation with 500 and 1000 agents and on the right
the one of the City-N simulation with a group
of 900, 1444 and 2025 agents. For these first
benchmarks, we enable the face shape constraint
on our method.

As we can see, in both cases our method
needs about 5 to 6 less time to play the scenario

0

20

40

60

80

100

120

140

Circle-1000

0

100

200

300

400

500

600

City-900 City-1444 City-2025

RVO2

Our method

Coarse grid

Fine grid

Circle-500

Figure 9: Time needed for the Circle-N and
City-N scenarios including proximity
queries and velocities updates.

than thekD-tree based method. The coarse reg-
ular grid needs here about twice the time of the
adaptive method. It is still more efficient than
thekD-tree based algorithms, but the size of the
coarse element has been here completely arbi-
trarily chosen and a coarser resolution may lead
to lower performances. The fine grid resolution
corresponds here to the finest achievable reso-
lution with respect to the face shape constraint.
The time needed to complete the scenario is here
equivalent to the adaptive method.

The speed-up compared tokD-tree based
methods mainly comes from the need to rebuild
the trees at each time step of the simulation. Our
method is based on the usage of a single struc-
ture used as environment representation as well
as acceleration structure for proximity queries.
This allows us to reduce the number of struc-
tures to maintain and to minimize the amount of
information to compute at each time step by ex-
ploiting the spatial and temporal consistencies
of the displacements of the agents.



In terms of memory cost, our adaptive ap-
proach usually stands in the same order of mag-
nitude than a coarse grid while presenting the
same performance than the usage of a fine grid.

To be fair in the comparison, let us compare
with a spatial hashing technique based on the
approach presented in [14]. The agents regis-
ter here in an implicit fine grid whose resolution
also corresponds to the finest achievable reso-
lution with respect to the face shape constraint.
The non-empty cells are stored in a hash table.
Its memory cost is chosen to be equivalent to
that of our structure.

Figure 10 shows some results for the
Crossing-5000 scenario. The bumps in the mid-
dle of the curves correspond to the meeting of
the two opposite groups of agents that creates a
high density region. Map-20 curve corresponds
to a configuration where the size of the cells gen-
erated by the adaptive process is strictly limited
by the face shape constraint.

The two methods are quite equivalent here.
The bumps appear earlier in our approach as
the environment has first to pay the cost of the
subdivision before absorbing the high density.
The bump for the HashTable-20 curve is due
to the increasing memory access required to fil-
ter the dense neighbours lists. The Map-10 (re-
spectively Map-5) curve shows a configuration
where the face shape constraint is relaxed to
consider half (respectively quarter) of the agents
viewing distance. Here our dynamically subdi-
vided model performs clearly better as the num-
ber of queried neighbouring agents is limited.

500

1000

1500

2000

2500

0 10 20 30 40 50

A
v
e

ra
g

e
 c

o
s
t 
o

f 
c
o

lli
s
io

n
 a

v
o

id
a

n
c
e

 (
m

s
)

Key frames of the simulation

HashTable 20

Map 20

Map 10

Map 5

Figure 10: Time (in ms) for the Crossing-5000
scenario in different configurations.

Figure 11: When the environment changes
(here new buildings are constructed),
agents paths are recomputed dynam-
ically during the simulation.

5.2 Dynamic environments

As we already stated above, our system is well
suited to dynamic environments. The multireso-
lution topological model provides efficient local
operators for the modification of the topology of
the environment partition. The agents tracking
method is also robust to dynamic changes in the
topology of the underlying mesh.

In the scene illustrated in figure 11, several
agents plan a path to cross an empty area. As
they start to walk along this path, new buildings
arise from the ground. These new obstacles reg-
ister themselves in the environment cells. As
soon as they appear, they are taken into ac-
count by the collision avoidance system when
the agents pass by. Each time a new obstacle
appears in the path of an agent, it is updated to
avoid this new obstacle.

6 Limitations and perspectives

We have presented a complete framework from
environment generation to crowd simulation.
Several aspects can still be improved to extend
the scope of our method.

6.1 Agents visibility

In our system, all the agents that lie in the
viewing area of a given agent are considered as
neighbours for the collision avoidance system.
This can include for example some agents that



lie behind a building corner which should actu-
ally not be considered as visible. To avoid this,
the particle tracking system could be used by
throwing a virtual particle from the agent to its
neighbours – as done in [22] for edge collision
detection. The tracking algorithm will then de-
tect if an obstacle is in the way between the two
agents and the given neighbour will not be con-
sidered for collision avoidance.

The viewing area of an agent is considered
here as a disc around its position. This is in-
herited from the RVO2 collision avoidance li-
brary we use. Other works suggest the use of
more complex shapes like cones. Our registra-
tion algorithm should be adapted to handle such
sophisticated approaches. The registration prin-
ciple we use is generic enough to be adapted this
way, for instance with agents registering only in
faces in front of their trajectories. The updates
of the registration data in case of subdivision or
simplification of faces would however be more
complex.

6.2 Moving obstacles

In our examples the environment is only com-
posed of fixed obstacles like buildings. To ob-
tain a more realistic simulation, moving obsta-
cles like vehicles should be considered.

Instead of representing obstacles as edges of
the environment partition, obstacles can be rep-
resented by ”floating” closed polygons. A parti-
cle can be associated with each vertex of such a
moving obstacle and tracked using the same par-
ticle tracking system as for the agents. Edges of
these polygons can then be registered in the cells
of the environment just like the fixed obstacles.
This way, moving obstacles are considered by
the agents in their velocity update algorithm.

6.3 Parallelism

Parallel computation can be achieved for all the
agents update process. After querying informa-
tion about its neighbouring configuration, each
agent can autonomously compute its new di-
rection and velocity. We did not investigate
deeply the speed-up that such parallel computa-
tion could bring to the overall simulation perfor-
mance, but our framework does not hinder such
improvement.

7 Conclusion

We have presented a crowd simulation system
based on the intensive usage of a unique topo-
logical model. It is used for the representation
of the environment, path planning and for prox-
imity querying algorithms. Its multiresolution
nature allows us to implement interesting fea-
tures for all these tasks.

Details of the modelling of the environment
can be added on finer levels enabling the usage
of view-dependent rendering algorithms. Path
planning can take advantage of a multi-scale
structure in hierarchical algorithms. Proximity
queries take advantage of the underlying effi-
cient topological structure and are speeded up
by the dynamic adaptive refinement of the en-
vironment partition. Moreover, this unified ap-
proach allows the simulation to take place on
any 2-manifold environment and eases the man-
agement of dynamic scenes.

We showed the efficiency of our approach
through a comparison with a well established
library (RVO2) and spatial hashing techniques.
All our example use the RVO2 library to com-
pute the agents velocities. We want to explore
the use of other approaches and especially rule
based ones that could take advantage of our
agent centered multiresolution model.

Finally, the combinatorial maps model we use
is defined in any dimension and may thus encode
multiresolution volumetric meshes. The particle
tracking system presented in [21] is defined in
3D as well. We are convinced that good results
could be obtained for 3D navigation as required
for flocking simulations of birds or fishes.

References

[1] A. Braun, S. Musse, L. de Oliveira, and
B. Bodmann. Modeling individual behav-
iors in crowd simulation. InCASA, page
143, 2003.

[2] D. Thalmann, C. O’Sullivan, P. Ciechom-
ski, and S. Dobbyn. Populating virtual en-
vironments with crowds. InEurographics
2006 Tutorial Notes, 2006.

[3] N. Badler, J. Allbeck, and N. Pelechano.
Virtual Crowds: Methods, Simulation, and



Control (Synthesis Lectures on Computer
Graphics and Animation). Morgan and
Claypool Publishers, 2008.

[4] S. Goldenstein, M. Karavelas, D. Metaxas,
L. Guibas, E. Aaron, and A. Goswami.
Scalable nonlinear dynamical systems for
agent steering and crowd simulation.Com-
puters & Graphics, 25(6):983–998, 2001.

[5] Hao Jiang, Wenbin Xu, Tianlu Mao, Chun-
peng Li, Shihong Xia, and Zhaoqi Wang.
Continuum crowd simulation in complex
environments. Computers & Graphics,
34(5):537–544, 2010.

[6] S. J. Guy, J. Chhugani, S. Curtis, P. Dubey,
M. Lin, and D. Manocha. Pledestrians: a
least-effort approach to crowd simulation.
In EG SCA, pages 119–128, 2010.

[7] C. Loscos, D. Marchal, and A. Meyer. In-
tuitive crowd behaviour in dense urban en-
vironments using local laws. InTPCG,
page 122, 2003.

[8] F. Lamarche and S. Donikian. Crowd of
virtual humans: a new approach for real
time navigation in complex and structured
environments.Computer Graphics Forum,
23(3):509–518, 2004.

[9] W. Shao and D. Terzopoulos. Autonomous
pedestrians. InEG SCA, pages 19–28,
2005.

[10] P. Fiorini and Z. Shillert. Motion plan-
ning in dynamic environments using veloc-
ity obstacles.Int. Journal of Robotics Re-
search, 17:760–772, 1998.

[11] S. Guy, J. Chhugani, C. Kim, N. Satish,
M. Lin, D. Manocha, and P. Dubey.
Clearpath: highly parallel collision avoid-
ance for multi-agent simulation. InEG
SCA, pages 177–187, 2009.

[12] Jur van den Berg, S. Guy, M. Lin, and
D. Manocha. Reciprocal n-body colli-
sion avoidance. InRobotics Research, vol-
ume 70 ofSpringer Tracts in Advanced
Robotics, pages 3–19. Springer, 2011.

[13] F. Tecchia, C. Loscos, and Y. Chrysanthou.
Visualizing crowds in real-time.Computer
Graphics Forum, 21(4):753–765, 2002.

[14] M. Teschner, B. Heidelberger, M. M̈uller,
D. Pomerantes, and M. H. Gross. Opti-
mized spatial hashing for collision detec-
tion of deformable objects. InVMV, pages
47–54, 2003.

[15] S. Paris, S. Donikian, and N. Bonvalet. En-
vironmental abstraction and path planning
techniques for realistic crowd simulation.
Computer Animation and Virtual Worlds,
17(3-4):325–335, 2006.

[16] A. Sud, R. Gayle, E. Andersen, S. Guy,
M. Lin, and D. Manocha. Real-time navi-
gation of independent agents using adap-
tive roadmaps. InVRST, pages 99–106,
2007.

[17] R. Gayle, A. Sud, E. Andersen, S.J. Guy,
M.C. Lin, and D. Manocha. Interac-
tive navigation of heterogeneous agents
using adaptive roadmaps.IEEE TVCG,
15(1):34–48, 2009.

[18] A. Botea, M. Müller, and J. Schaef-
fer. Near optimal hierarchical path-finding.
Journal of Game Development, 1:7–28,
2004.

[19] P. Kraemer, D. Cazier, and D. Bechmann.
Extension of half-edges for the represen-
tation of multiresolution subdivision sur-
faces. The Visual Computer, 25(2):149–
163, 2009.

[20] CGoGN. Combinatorial & geometric
modeling with genericN -d maps.http:
//cgogn.u-strasbg.fr.

[21] T. Jund, D. Cazier, and J.-F. Du-
fourd. Particle-based forecast mechanism
for continuous collision detection in de-
formable environments. InSIAM/ACM
GDSPM, pages 147–158, 2009.

[22] T. Jund, D. Cazier, and J.-F. Dufourd. Edge
collision detection in complex deformable
environments. InVRIPHYS, pages 69–78,
2010.


