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Université L. Pasteur, 7, rue Descartes, 67084 Strasbourg
cazier@dpt-info.u-strasbg.fr

Keywords: computational geometry, boolean
operations, geometric refinement, algebraic speci-
fications, rewrite systems.

Abstract: The geometric refinements of 2D and 3D

subdivisions are basic operations in geometric program-

ming. They consist in partitioning their cells, i.e. their

volumes, faces and edges, until no intersection exists be-

tween them and in achieving their topological restructur-

ing. These crucial operations deserve formal and precise

definitions. We present, in this paper, new methods to

formalize their design. Starting from a mathematical

definition of the topological models and refinements, we

present an algebraic specification of the operators needed

to handle them. Then, we give a high-level and complete

description of the refinement processes thanks to the use

of rewrite systems. This approach allows us to exhibit

integrity constraints for the handled objects and to focus

on the conceptual and logical aspects of the refinement,

avoiding tedious details of implementation. Finally, we

show how the systems are enhanced to reflect choices of

implementations and algorithmic improvements.

Introduction

The refinement of geometric objects and, more gen-
erally, of plane or space subdivisions is the ba-
sis of numerous treatments in geometric modeling.
Roughly speaking, this operation corresponds to the
merging of plane or space tesselations. It is fre-
quently involved in the evaluation of boolean op-
erations in modelers using the boundary represen-
tation. It can also be used to merge objects built
separately and to construct 2D or 3D meshes from
curves or pieces of surfaces that are more easily han-
dled than complex faces or volumes.

In a practical way, the refinement of two subdi-
visions, i.e. two partitions of the 2D or 3D space in
distinct cells (vertices, edges, faces and volumes for
the 3D case), consists in producing a new subdivi-
sion that contains the cells of the starting ones that
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have been cut out along their intersections. The in-
cidence and adjacency relationships between these
transformed cells and the inserted ones are main-
tained and completed during the whole process.

Figure 1: Three parallelepipeds grouped in a set of
cells containing intersections. (The volumes are ex-
ploded to make the faces visible.)

Figure 2: The result of the refinement is the subdi-
vision in volumes of the 3D space.

The refinement is carried out for any number of
subdivisions by grouping them in a set of cells that
may contain intersections or overlaps (see Fig. 1 for
a 3D example). The refinement of this set aims to
transform it into a subdivision that correctly mod-
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els a partition of the embedding space (see Fig. 2).
The result of a boolean operation between the start-
ing objects is obtained, from the refinement, by a
selection or extraction of the required parts.

For the 2D case, the refinement is a generalization
of the line arrangements problems [1, 2] or of the
building of the trapezoidal map of a set of segments
[3]. The 3D refinement has mainly been studied in
the scope of classical 3D boolean operations [4, 5,
6, 7, 8, 9], but also for general nD booleans [10] or
specific models like the SGC one [11].

The refinements have been studied many times,
but problems remain with regard to their pre-
cise definitions and reliabilities. The robustness
problems are mainly rooted in approximations and
round-off errors due to floating-point arithmetic.
As pointed out in [12], the refinement problem is
a prototype of the difficulties encountered with the
approximation issues.

Numerous solutions have been proposed, includ-
ing the limitation of the redundancy of numerical
data and the addition of symbolic reasoning sys-
tems insuring against geometrical decisions that are
in contradiction with previous ones [6].

Other purely numerical approaches aim to control
and limit the round-off errors by the use of floating-
point intervals [13], rationales [14], multi-precision
integer [15] or lazy rational arithmetic [9].

If these studies seem to successfully answer the
numerical questions, they still leave some problems
unsolved. The difficulties mainly come from the
need of a precise and rigorous definition of the
refinement whose intrinsic complexity is increased
by two constraints: to keep the description close
enough to an implementation and to take into ac-
count the efficiency of the algorithms that is essen-
tial in practice.

In most approaches, the implementation consid-
erations are emphasized. In these cases, the re-
finements are defined for objects whose topological
structure is not explicitly given (for instance objects
only regarded as lists of faces or edges). Thus, the
topology is often introduced on an ad hoc basis and
only for complexity reasons.

Indeed, the data structures are often extended to
optimize the computations. That notably includes
redundant pointers added to speed up the traversals
of cells, bounding boxes used to avoid extra inter-
section tests and, often, links to the priority queues
and dictionary that are needed for the plane-sweep
algorithms or for a multidimensional searching of
the couples of secant bounding boxes in 3D.

The consequences are multiple. Firstly, it is im-
possible to express precise integrity constraints for
the objects handled and thus serious doubts remain
about the exact domain of application of the pro-
posed operations. Secondly, these informal defini-

tions may lead to confusions between the data struc-
tures that implement the topological model and
those that are added for efficiency reasons.

Thirdly, in those approaches, the corresponding
algorithms are often described informally, in terms
of concrete data structures, and with a procedural
point of view. All the mentioned improvements are
usually described for a general position case that
excludes the cases that need specific treatments.
Therefore, if the results are proved for the general
case, they cannot be assumed for all particular cases
and for the implemented extended structures. In
the same way, such descriptions prevent any formal
proof of the correctness of the algorithms.

On the other hand, there are works that put for-
ward a precise mathematical definition of the ob-
jects and a formal description of the refinement pro-
cess. If they answer the previously mentioned prob-
lems, the transition from those formal descriptions
to an efficient implementation of the corresponding
algorithms is still a task often more arduous than
simple algorithm design.

To bridge the gap between a desirable formalism
and the practical requirements, we present a new
methodology for the refinement design. We com-
bine an algebraic model of subdivisions with the
use of formal methods that are subjects of increas-
ing interest in software design. Precisely, we use
algebraic specifications [16, 17, 18] allied to rewrit-
ing [19, 20].

The principles are as follow: we start from a
mathematical definition of the topological model
and its refinement. We give a high-level descrip-
tion of the geometric objects through an algebraic
specification of the model and of the operators we
need to handle it. The refinement process is then
defined by a rewrite system that describes a set of el-
ementary and independent transformations. Those
rewrite rules are applied successively to the starting
objects until the expected result is obtained.

At this level, we are able to prove some logical
properties of the process and to check that the de-
fined operations verify their mathematical defini-
tion and the integrity constraints. The next step
consists in enhancing the rewrite system with con-
trol structures and new rules in order to reflect
choices of implementation and algorithmic improve-
ments.

Although any other equivalent model could be a
possible candidate, we choose to use the model of
embedded combinatorial maps [21] to describe and
handle the topology both in the 2D and 3D cases.
The main reason is that this model is simple, well
defined and naturally supports the embedding. The
topology defines the object cells and their adjacency
relationships, while the embedding defines the po-
sitions and shapes of the cells. This model provides
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a precise and concise description of subdivisions
and is algebraically defined by a mathematical de-
scription of its properties and integrity constraints.
Therefore, maps are defined regardless of all imple-
mentation and provide a good starting point for our
purposes.

We start with a detailed study of the 2D case that
will permits us to present the formalisms used. This
first part includes the definition of the 2-maps and
2D refinement, their specifications and an outline
of the proof of the convergence of the correspond-
ing rewrite system. The 2D case ends with the en-
hancements that lead to a high-level description of
a plane-sweep strategy.

In the second part, we tackle the 3D refinement.
We discuss the different cases of face/face intersec-
tion and show how they lead to a rewrite system for
the 3D refinement. Then, we explain how classical
strategies can be taken into account with our meth-
ods. Finally, we present examples of refinement and
discuss the way our approach makes easier the pro-
totyping and further implementations of the objects
and processes described.

The 2D refinement

Definition and properties of 2-maps

Let us recall some basic notions on maps. A com-
binatorial 2-map is a 3-tuple (B, α0, α1), where B
is a finite set whose elements are called darts, α0 is
an involution on B without fixed points, i.e. a per-
mutation such that α0(α0(x)) = x and α0(x) 6= x,
for all x, and α1 is a permutation on B.

For any permutation σ on B, the orbit 〈σ〉(x) of
x with respect to σ is the set {x, σ(x), . . . , σk(x)},
where k is the smallest positive integer such that
σk+1(x) = x. Clearly, all elements of 〈σ〉(x) have
the same orbit. The darts of a same orbit with
respect to αi are said to be i-linked.

Since α0 is an involution without fixed points, for
any dart x, 〈α0〉(x) = {x, α0(x)}. Such an orbit, al-
ways formed by exactly two 0-linked darts, is called
a topological edge. The same way, an orbit with re-
spect to α1 is called a topological vertex. Intuitively,
a vertex is a sequence of 1-linked darts.

A dart Three 1-linked dartsTwo 0-linked darts

Figure 3: Representations of darts and links.

In the plane, the darts are usually interpreted
as half-edges. Fig. 3 presents the drawing conven-

tions with half-segments associated to darts. Two
0-linked darts are drawn as segments. The 1-links
are not explicitly represented, but the darts of a ver-
tex share the extremities of the half-segments used
to depict them.

Maps provide a simple way to traverse faces. If
we consider a face as a sequence of darts, then, the
successor of x in its face is ϕ(x) = α1(α0(x)). The
orbit 〈ϕ〉(x) is called the oriented face of x.

Example 1 Figure 4 shows a 2-map with B =
{1, . . . , 7, -1, . . . , -7}, α0 = (-1, 1) (-2, 2) (-3, 3)
(-4, 4) (-5, 5) (-6, 6) (-7, 7), α1 = (1, 2) (-2, 3) (4, -6)
(-3, -4, 7) (-7, 6, 5, -1)(-5).

The used cyclic notation σ = . . . (x1, . . . , xn) . . .
means that for all i in [1, n − 1], σ(xi) = xi+1 and
that σ(xn) = x1.

Thus α0(1) = -1, α0(-1) = 1, and the or-
bit 〈α0〉(1) = {1, -1} defines an edge. Similarly,
α1(6) = 5, α1(5) = -1, α1(-1) = -7, α1(-7) = 6,
thus 〈α1〉(6) = {5, -1, -7, 6}, and the vertex of dart
6 contains darts 5, -1, -7 and 6. ⊓⊔
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Figure 4: A combinatorial 2-map embedded in the
plane without self-intersection.

Example 2 For the 2-map in Fig. 4, we have
ϕ(-7) = -3, ϕ(-3) = -2, ϕ(-2) = 1, ϕ(1) = -7, and
thus 〈ϕ〉(-7) = {-7, -3, -2, 1} is the face of 7. It cor-
responds to the square face of the figure. The same
way, darts 4, 7 and 6 correspond to the triangular
face and darts -4, -6, 5, -5, -1, 2 and 3 form the
external face. ⊓⊔

The topology of all subdivisions of closed ori-
ented surfaces can be modeled by a 2-map. As
for all this kind of subdivisions, the well-known
Euler’s characteristic χ(M) and genus g(M) can
be defined for any map M . If we denote by |σ|
the number of orbits of a permutation σ, then
χ(M) = |α1| − |α0| + |ϕ| and g(M) = 1 − 1

2χ(M),
the genus theorem saying that g(M) is always a non
negative integer.

Let us notice here that we only use maps to model
subdivisions of the plane. Topologically speaking,
the refinement consists in building a planar map,
i.e. a map whose genus is null, from any given map
and according to its geometry.

The geometry of a map is defined through its em-
bedding in the plane, i.e. the embedding of all its

3



darts. This way, vertices, edges and faces are re-
spectively associated with points, line segments and
polygons.

Formally, a 2-map M (linearly) embedded in the
plane is a 4-tuple (B, α0, α1, π0), where (B, α0, α1)
is a 2-map and π0 is a function that maps each
dart on the point on which its vertex is 0-embedded.
The embedding of dimension 1 and 2 are defined
implicitly from π0.

Thereby, the 1-embedding π1(x) of x is the inte-
rior of the segment [π0(x), π0(α0(x))]. In the same
way, the 2-embedding π2(x) of x is the interior of
the polygon {π0(y), π1(y)}y∈〈ϕ〉(x) defined by the
sequence of points and segments of its boundary.
Thanks to the map’s orientation, for all dart x, the
polygon π2(x) always lies on the right of the seg-
ment π1(x).

An embedded 2-map can model a set of segments
and polygons in the plane with some incidence and
adjacency relationships. These relationships may
be partial, missing or even inaccurate as regards the
orientation. Moreover, without geometrical con-
straints, a map may contain self-intersections or
overlappings between its cells and connected com-
ponents.

Such a map is sufficient to model the starting
set of 2D subdivisions we want to refine. The 2D
refinement then consists in transforming it into a
map that models a partition of the plane, i.e. a pla-
nar map embedded without self-intersection. In the
following, we say that such a map is well embedded.
Let us notice that a map that can be well embedded
in the plane is necessarily planar [22]. Conversely,
a non planar map can never be well embedded in
the plane.

Formally, let Π(B) = {π0(x), π1(x), π2(x)}x∈B be
the set of embeddings of a map M , then M is well
embedded if:

(a)
⋃

p∈Π(B)

p = R
2;

(b) ∀p, q ∈ Π(B), p 6= q ⇒ p ∩ q = ∅;

As the embeddings of edges and faces are implic-
itly defined, we can express these two conditions in
a more practical way. Let angle(x) be the angle of
the segment π1(x) with respect to a given axis of
the plane. Then, a map is well-embedded if the five
following local conditions hold, for all darts x and
y of M :

(i) 〈α1〉(x) 6= 〈α1〉(y) ⇒ π0(x) 6= π0(y);

(ii) π0(x) /∈ π1(y);

(iii) 〈α0〉(x) 6= 〈α0〉(y) ⇒ π1(x) ∩ π1(y) = ∅;

(iv) the sequence
{

angle(αk
1(x0))

}

k∈[0,...,n]
is in-

creasing, n being the smallest integer such that
αn+1

1 (x0) = x0 and x0 ∈ 〈α1〉(x) such that
angle(x0) = min{angle(y)}y∈〈α1〉(x);

(v) π1(x) 6= ∅.

Condition (i) means that all darts 0-embedded
on the same point belong to the same vertex, which
implies that the 1-links are complete. Conditions
(ii) and (iii) make sure that there are neither secant
edges nor vertex incident to an edge.

Condition (iv) requires some explanation: the se-
quence of the angles of the darts of a vertex is in-
creasing when starting from the dart x0 with the
minimal angle. It means that as the edges of a
given vertex are examined following the 1-links, the
associated segments turn counter-clockwise around
the vertex. A vertex that satisfies this condition is
said to be sorted (see Fig. 5 for examples).

Sorted vertex Unsorted vertex

Figure 5: Circle arcs represent 1-links

Intuitively condition (iv) insures a good orienta-
tion of the map and implies that the faces do not
fold back over themselves. All these conditions also
imply that the 2-embedding do not overlap.

The last condition (v) is not necessary and is only
added to obtain a minimal representation, with re-
gard to the number of darts.

Formal specification of maps

The mathematical definition we give for maps and
2D refinement is limited because it only describes
the static conditions that musr satisfy a refined
map, but do not say how it may be obtained. As
we said previously, our approach is to adopt a more
constructive point of view.

In fact, we need to specify how maps are built and
a set of operations required to perform the refine-
ment. Thus, the second step of our formalization is
to algebraicly specify [16] the combinatorial maps
and the operators needed to handle them.

Various detailed specifications of maps have been
proposed [23, 24]. Here, we present a simplified ver-
sion as we want to focus on the refinement problem.
Maps can be defined from three basic functional
generators: v, iee, l1 as shown in [25]. Generator v
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creates an empty map, iee(M, x, y, px, py) inserts an
embedded edge {x, y} in map M , i.e. two 0-linked
darts x and y respectively 0-embedded on points px

and py, and l1(M, x, y) 1-links dart x to dart y.
Basic destructors, i.e. inverse functions that re-

move links or edges, are also defined. All these ba-
sic atomic operations are then used to define more
complex functions similar to the well-known Euler’s
operators [26, 27].

Table 1 shows a small piece of our specification.
The language used is ad hoc but rather close to
OBJ3 [28]. This specification module extends a
BASE module that defined booleans and points and
is not detailed here. The first three axioms indicate
that the basic generators may permute. Thus, each
map is represented by a class of first order congru-
ent terms, where the applications of iee and l1 are
the same but permuted.

A set of functional selectors on and constructors
of maps are then defined through a first order equa-
tional theory. Operations are described by axioms
that indicate their behavior with respect to the ba-
sic generators.

For instance, operation e(M, z) tests if dart z ex-
ists in map M . For that, it breaks down the term
that represents M and tests, at each step, if z has
just been inserted by a heading iee generator or if
it exists in the subterm. The α0(M, z) selector that
gives the image by α0 of dart z in map M , is defined
the same way: it breaks down the term M to find
the iee generator used to insert dart z.

All the specified operators are constrained by pre-
conditions ensuring that the constructed terms al-
ways represent 2-maps that satisfy their mathemat-
ical definition. For instance the preconditions of
iee(M, x, y, px, py) says that x and y should be dis-
tinct and not exist in M , which implies that the α0

selector is really an involution.
The underlying equational logic can be used to

prove these properties as explained in [29]. These
proofs are mainly done by structural induction on
the shape of the terms that represent the maps.
Here it is impossible to give all the axioms, so only
some typical ones are written in Table 1. The full
specification may be found in [30].

In the following, to define the refinement, we
use topological selectors to test the equality of two
(topological) vertices or two edges: eqv(M, x, y)
and eqe(M, x, y), and geometrical selectors to test
the equality of the embedding of vertices or edges:
eqev(M, x, y) and eqee(M, x, y). Let us notice that
to compare two cells (vertices or edges), we only
need two darts, i.e. one by cell.

For instance the specification of eqv(M, x, y) uses
the auxiliary eqv′ function that describes the traver-
sal of the vertex of x. Dart x0 is the starting point
and the eqv′ axiom says that y is tested against all

Table 1: 2-maps specification

Spec 2MAP extends BASE by

Sorts Dart, 2Map

Operators

v : −→ 2Map
iee : 2MapDart Dart PointPoint → 2Map
l1 : 2Map Dart Dart −→ 2Map
e : 2Map Dart −→ Bool
α0 : 2Map Dart −→ Dart
eqv : 2Map Dart Dart −→ Bool
cutee : 2Map Dart Point −→ 2Map

Axioms (M : 2Map ; x, y, z, t : Dart ;
px, py, pz, pt : Point)

l1(l1(M, x, y), z, t) = l1(l1(M, z, t), x, y)
l1(iee(M, x, y, px, py), z, t) =

iee(l1(M, z, t), x, y, px, py)
iee(iee(M, x, y, px, py), z, t, pz, pt) =

iee(iee(M, z, t, pz, pt), x, y, px, py)

e(v, z) = false
e(l1(M, x, y), z) = e(M, z)
e(iee(M, x, y, px, py), z) =

(z = x) ∨(z = y) ∨ e(M, z)

α0(iee(M, x, y, px, py), z) =
if z = x then y
else if z = y then x

else α0(M, z)

eqv(M, x, y) = eqv′(M, x, x, y)
with eqv′(M, x0, x, y) =

if x = y then true
else if α1(M, x) = x0 then false

else eqv′(M, x0, α1(M, x), y)

cutee(iee(M, x, y, px, py), z, pz) =
if z = x ∨ z = y then l1(l1(M ′, x′, y′), y′, x′)
else iee(cutee(M, z, x′, y′), x, y, px, py)

with (x′, y′) = newdarts(M)
M ′ = iee(iee(M, x, x′, px, pz), y, y′, py, pz)

Preconditions

prec iee(M, x, y, px, py) ≡
x 6= y ∧ ¬e(M, x) ∧ ¬e(M, y)

End

darts of the vertex of x until x0 is reached again.

We also use constructors that modify the topol-
ogy and the embedding of a map. For instance,
cutee(M, z, pz) cuts the edge of z at point pz (see
Fig. 6). To do that it breaks down the term to
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find the generator iee used to insert the edge of z,
denoted {x, y} with z = x or z = y. Then it re-
moves the occurrence of this generator and replaces
it with the insertion of the two new edges {x, x′}
and {y, y′}. Finally, 1-links are placed between x′

and y′ to build the new vertex.

x
yx’

y’

cutee(M, x, p)

x
y

the map M

x

dv(M, x)

x

the map M

Figure 6: Illustration of dv and cutee

Operator merge(M, x, y) merges the vertices of
x and y, reordering the 1-links of these two ver-
tices so that the final vertex is sorted. Finally, the
destructor dv(M, x) deletes dart x from its vertex
by removing its 1-links (see Fig. 6). Other easily
understandable selectors appear in the rules of the
rewrite systems given later.

Rewrite system for the refinement

The refinement of a map consists in transforming
it with the previously mentioned operators until
it satisfies the conditions of well embedding (see
Fig. 7). All algorithms that perform such a refine-
ment use, in practice, the same kind of operations.
The only real difference between the algorithms is
the strategy chosen to apply these modifications.

(a) The starting map made from
two overlapping subdivisions

(b) Its refinement

Figure 7: An example of 2D refinement

Thus, a good way to formally and completely de-
scribe the refinement, without getting bogged down
in efficiency or implementation choices, consists in

using rewriting techniques. Each basic transforma-
tion, and the conditions on with it can be applied,
is nicely described by a conditional rewrite rule. All
these elementary and independent rules are grouped
in a conditional modulo term rewrite system [31],
named R2D, given in table 2.

Intuitively, the conditions of the rules test the
existence of darts that do not verify one of the five
conditions of well embedding. If it occurs, a ge-
ometric operator is applied to locally correct the
embedding and to adapt the topology. This leads
to a simple and generic definition of the a priori
complex process of refinement.

In the following, the rewrite rules are depicted
in a very visual fractional fashion. For each rule,
the numerator represents the starting map and the
denominator the map that results from the rewrite
step. The rules can be applied only when the con-
ditions described after the if are satisfied.

To condense the rules’ description, we adopt the
following convention: the term x ∈ M means that x
appears as a Dart parameter of some generator used
to build M . Thus, x ∈ M is a shortcut that replaces
the four possible forms of M : iee(M ′, x, y, px, py),
iee(M ′, y, x, . . .), l1(M ′, x, y) and l1(M ′, y, x).

This avoids writing the same rule four times with
the different shapes of M , but the same conditions
and transformations. For instance, one of the four
forms of rule R1 is:

R1 :
l1(M, x, y)

dee(l1(M, x, y), x)
if nullee(l1(M, x, y), x)

Therefore, we have a true rewrite system in the
sense of [31] without introducing variables in the
right-hand sides, contrary to what may appear at
first sight.

The rules of R2D are depicted graphically in
Fig. 8. Some new 0-embeddings are inserted dur-
ing the refinement and deserve to be highlighted.
They are displayed as boxes linked to a vertex by
dotted lines and containing the name of a point as
mentioned in the text.

Let us now detail the meaning of each rule and
the well embedding conditions (w.e.c.), defined in
section , it deals with. Rule R1 deletes a null edge,
represented in Fig. 8 as a loop, that violates w.e.c.
(v). It means that if there exists a dart x in map
M (x ∈ M) that belongs to a null embedded edge
(nullee(M, x)), then its edge is deleted from M
(dee(M, x)).

If two edges are superposed that violates w.e.c
(iii), rule R2 deletes the second one. Formally, if
there exist two darts x and z whose edges are dis-
tinct (¬eqe(M, x, z)), but 1-embedded on equal seg-
ments (eqee(M, x, z)), then the edge of z is deleted.

Rule R3 deals with w.e.c. (ii) and thus cuts in
two parts an edge if there exists a vertex incident to
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Table 2: Rewrite system R2D for the refinement of 2-maps

R1 :
M

dee(M, x)
if

{

x ∈ M
nullee(M, x)

R4 :
M

cutee(cutee(M, x, i), z, i)
if

{

x ∈ M ∧ z ∈ M
secant(M, x, z)

with i = intersection(M, x, z)

R2 :
M

dee(M, z)
if







x ∈ M ∧ z ∈ M
¬eqe(M, x, z)
eqee(M, x, z)

R5 :
M

merge(M, x, z)
if











x ∈ M ∧ z ∈M
¬eqv(M, x, z)
eqev(M, x, z)
mergeable(M, x, z)

R3 :
M

cutee(M, x, p
if







x ∈ M ∧ z ∈ M
¬nullee(M, z)
incident(z, x)

R6 :
M

dv(M, x)
if

{

x ∈ M
¬ sorted(M, x)

with p = gem0(M, z)

R2

y
x

t
z

y
x

R1yx

R3
y

x

z

y’ y

x

p p
z

x’

R5

x

z z

x

x

yz

t

R4

i

x’

y’z’

t’
tx

yz

R6

x x

Figure 8: Graphical illustration of R2D

it. Formally, if there exists a dart z 0-embedded on
a point p that is incident to the edge of a dart x and
if z does not belong to a null edge, then the edge
of x is cut at point p. Point p is obtained by the
selector gem0(M, z) that returns the 0-embedding
of dart z in M .

Rule R4 deals also with w.e.c. (iii) and real-
izes the intersection cutting. If there are in M two
darts x and z whose edges are 1-embedded on se-
cant segments, then the two edges are cut at their
intersection point i. This point is obtained by the
intersection(M, x, z) operation.

The two last rules handle vertices. Rule R5

merges two distinct vertices that does not verify the
w.e.c. (i). If there are in M two darts x and z that
belong to distinct vertices (¬eqv(M, x, z)) and are
0-embedded on equal points (eqev(M, x, z)), then
the two vertices are merged. This merging can be
done if the two vertices are mergeable, i.e. if they
are both sorted.

Finally, rule R6 destroys non sorted vertices. If
a dart x belongs to a non sorted vertex of M , then
it is deleted from this vertex. This rule is applied
until the vertex is sorted or contains only one dart.
After that, the deleted darts are correctly reinserted
in the vertex by R5 which allows the handling of
w.e.c (iv).

Logical properties

One of the interest of this formal approach lies in
the fact that at this level we are able to prove log-
ical properties of the described process. First, the
rewrite system R2D is terminating. That means
that there does not exist any infinite sequence of
rule applications.

To formally prove that, we use the techniques of
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[32] and construct a measure m of maps that re-
flects the progress of the refinement. The measure
counts the number of null edges, of couples of equal
or secant edges, of overlappings and of non sorted
vertices. Let us note that m is also algebraicly spec-
ified. It is then easy to prove that each rule appli-
cation decreases this measure with lower bound 0,
which leads to the termination of the system.

Let us examines informally, the proof for instance
for R1. The conditions to start R1 are x ∈ M and
nullee(M, x). The precondition of nullee stipulates
that x is 0-linked to another dart, we denote by y,
and that x and y are embedded on points that we
denote p and q.

Applying some permutations in term M , we can
find a term of the class of M that has the shape
em0(em0(l0(M ′, x, y), x, p), y, q), which is proven
by structural induction on the shape of the terms.
This step is an inductive proof of theorems, valid in
the finitely generated algebras [33] corresponding to
the specification.

Rule R1 transforms M in dee(M, x) which is
proven to be equal to M ′ due to the axioms of the
specification of dee. Finally, the definition of the
measure m is used to prove that m(M) > m(M ′),
the number of null edges being reduced. The other
rules are handled, rather easily, in the same way.

The confluence of the rewrite system can also be
proven. Roughly speaking, this means that the re-
sult of the refinement process does not depend on
the order in which the rules are applied. The proof
of confluence is more difficult because the rewriting
is conditional and done modulo the permutations.
Moreover, two different terms may represent two
isomorphic maps, i.e. two maps where the links
and the embeddings are the same but the names of
the darts are permuted. We have to consider such
maps as equal.

However, the initiating conditions of the rules are
separated which simplifies the study, i.e for a given
map, the same dart or pair of darts cannot initiate
two distinct rules. For instance, two secant darts
cannot have equal vertices.

The only way we have found to prove the lo-
cal confluence is the exhaustive analysis of critical
pairs, i.e. cases where two rules may be initiated by
two different darts or couples of darts. Here again
the preconditions are used to obtain the shape of
the terms to be rewritten. Then, we can check by
hand that critical pairs are joinable [30].

Intuitively, this proof amounts to checking that
the geometrical operators may permute and do not
affect the geometrical properties of the map. For
instance, if there exist two distinct couples, c1 and
c2, of secant edges, it is easy to check that applying
the rule R4 to c1 and then to c2 leads to the same
result as applying R4 to c2 first.

Our rewrite system is therefore convergent. This
implies that, for each map, the rewriting leads to
one unique normal form modulo map congruence.
Thus, the term rewrite system may be seen as a
function of map normalization which projects any
map into its refinement. The convergence gives us
the possibility to choose any convenient or efficient
strategy for rule application, which is crucial to de-
riving concrete algorithms.

Another important tool provided by this formal-
ism lies in the possibility to prove that the refine-
ment of a map leads to the expected result. Indeed,
the mathematical definition of well embedding can
easily be translated in the equational theory of the
specification. We can then prove that the normal
form of a map verifies this definition.

The proof is similar to the previous one and
mixes structural induction with traditional equa-
tional logic. It is in fact a proof by contradiction.
For instance, should the normal form contain a cou-
ple of secant edges, we would be able to use the
specification of the secant function to deduce the
shape of the corresponding term and then make per-
mutations in this term so that the rule R4 can be
applied, which proves that this could not be a nor-
mal form.

Efficient strategies of evaluation

A naive use of the refinement rewrite system de-
scribed above is to test for each dart or couple of
darts if a rule can be executed. The corresponding
algorithm has the following shape:

Repeat

Choose x in M

Try to execute rule 1 and 6 with x

Repeat

Choose z in M

Try to execute rule 2 to 5 with (x, z)

Until no rule can be executed with x

Until no rule can be executed

Such an abstract algorithm is not deterministic,
because darts are randomly chosen. To describe a
concrete, i.e. real and efficient, algorithm, we have
to devise a strategy to choose darts. We achieve
this goal by adding to the term rewrite system con-
trol structures that yield the dart or couple of darts
that are going to be examined. A rewrite rule then
describes the transformations of the map and those
of the control structure.

Geometrical properties can be exploited to avoid
examining couples of darts that cannot interact. If
D and D′ are the vertical lines that pass through the
vertices of an edge {x, y}, then the darts that can
interact with dart x or y are those whose vertices
stand in the plane region lying between D and D′.
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Table 3: Rewrite system RSweep with plane sweep strategy

RS1
:

X, Y, V, M

d(d(X, x), α0(M, x)), Y, V, dee(M, x)
if

{

x = first(X)
nullee(M, x)

RS4
:

X, Y, V, M

i(i(i(i(X, x′), y′), z′), t′), Y, V, cutee(cutee(M, x, p), z, p)
if







x = first(X)
z = gsecant(Y, M, x)
z 6= nil

with p = intersection(M, x, z)

RS5
:

X, Y, {z}, M

X, Y, {z}, merge(M, x, z)
if

{

x = first(X)
¬eqv(M, x, z) ∧ eqev(M, x, z) ∧ mergeable(M, x, z)

RS7
:

X, Y, V, M

d(X, x), i(Y, x), {x}, M
if

{

¬(RS1 ∨ . . . ∨ RS6
)

x = first(X) ∧ leftdart(M, x)

RS′

7
:

X, Y, V, M

i(d(X, x), z), d(d(Y, α0(M, x)), z), {x}, M
if











¬(RS1 ∨ . . . ∨ RS6
)

x = first(X) ∧ rightdart(M, x)
z = gbelow(Y, M, x) ∧ z′ = gabove(Y, M, x)
interact(M, z, z′) ∧ z 6= nil ∧ z′ 6= nil

RS′′

7
:

X, Y, V, M

d(X, x), d(Y, α0(M, x)), {x}, M
if











¬(RS1 ∨ . . . ∨ RS6
)

x = first(X) ∧ rightdart(M, x)
z = gbelow(Y, M, x) ∧ z′ = gabove(Y, M, x)
¬interact(M, z, z′) ∨ z = nil ∨ z′ = nil

Following a well known denomination [3], we call
them active darts.

1

-1
D’D

4
-4

5

-5
-3 3

2

-2

Figure 9: In the plane region defined by edge {1,-1},
darts 2, -2 and -3 are active

The rewrite system R2D is transformed into
RSweep to use this property, in a classical plane-
sweep strategy [2, 3]. Darts x are examined from
the left to the right. To do that, we use a priority
queue denoted X , classically called the X-structure,
as control structure. Darts z are taken in the plane
region defined by the edge of x.

To avoid examining all active darts, we sort their
edges from bottom to top. This way, there are only
two darts to examine, namely the dart whose edge
is just below edge {x, y} and the one whose edge is
just above.

To avoid computing for each current x the sorted
set of active darts, this set is maintained by each
rewrite rule as a dictionary denoted Y . This dictio-
nary is sometimes called the Y -structure.

Moreover, as equal vertices are behind each other
in X , the merging can only occur for two consec-
utive vertices. Therefore, we add a new structure,
denoted V , that only contains the last used vertex
(in fact the last used dart of this vertex).

The rewrite system RSweep displayed in table 3,
begins with all darts sorted from the left to the
right, put in the priority queue X and with Y and
V empty.

Here, only the rules RS1
, RS4

and RS5
are given.

They correspond to the rules R1, R4 and R5 of
the first system enhanced to take into account the
plane-sweep strategy. The other ones are similarly
enhanced.

The changes concern updating of the control
structure and the deterministic choice of darts. Two
operations, i and d, are used to handle the con-
trol structures. They are used respectively to insert
darts in and delete darts from X or Y .

In rule RS1
, the current dart x is the first element

of X and obtained by the function first(X). When
the rule is applied, the darts of the edge of x, i.e.
x and α0(M, x), that are deleted from M are also
removed from X . Thus X only contains darts that
exist in M .

In rule RS4
, x is also the first element of X . Dart

z is obtained by the gsecant(Y, M, x) operator that
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searches within Y if either the edge just below or
just above x is secant to the edge of x and returns
it or nil if it cannot be found. After the cutting
out, the new darts x′, y′, z′ and t′ are inserted in X .
This way X always reflects the set of darts of the
current map.

The last changes appear in rule 5. As we said
before, the only dart that can be merged with x is
the last examined dart that has been placed in V .
Thus, z is taken in V .

Rules RS7
, RS′

7
and RS′′

7
are used to maintain X ,

Y and V when the rewrite system sweeps from the
left to the right, which occurs when rules RS1

to RS6

cannot be executed. This last condition is the nega-
tion of the concatenation of the conditions of these
rules and is condensed by the ¬(RS1 ∨ . . .∨ RS6

) for-
mula. In these three rules dart x that becomes the
last used dart, after the sweep, is placed in V .

Rule RS7
handled the case where x is a left dart,

i.e. x is the left vertex of its edge (leftdart(M, x)).
In this case, it becomes active and thus is deleted
from X and inserted in Y .

On the other hand, if x is a right dart it was an
active dart of Y and is deactivated, i.e. removed
from X and Y . In this case, the edges that are just
below and above the edge of x in Y may not yet have
been checked together and may interact as shown
in Fig. 10. These darts z and z′ are respectively ob-
tained by the gbelow(Y, M, x) and gabove(Y, M, x)
functions.

z’

z

x

z

z’

x

Figure 10: Right darts inactivation

If there is no dart below x the function gbelow
returns nil and conversely for gabove. Thus, if z or
z′ are equal to nil or if they do not interact there is
nothing more to do (RS′′

7
). Else, dart z, whose edge

is just below x, is removed from Y and reinserted in
X to be examined once more and especially against
z′ (RS′

7
).

This enhanced rewrite system is a complete de-
scription of a plane-sweep strategy. It is obtained
by simple transformations of the rules of the generic
rewrite system R and the addition of control rules.

The interest of this approach is the clear separa-
tion between data structures used to handle maps
and data structures used to improve the control and
reduce the complexity of the algorithms.

A classical algorithm [1, 2] is directly derived
from the rewrite system. Its complexity is in
O((n + i) ln(n)), where n is the number of darts
and i the number of intersections. The structure

of the algorithm is obtain by interpreting the con-
trol rules RS7

, RS
7′

and RS
7′′

and has the following
classical shape:

X = darts of M sorted by x-coordinates

Y = ∅
V = ∅
While X 6= ∅

x = first(X)

Try to execute rule 1 and 6 with x

get z from Y and x

Try to execute rule 2 to 4 with x and z

get z from V

Try to execute rule 5 with x and z

remove x from X

V = {x}
If x is a leftdart

Then add x to Y

Else {x is a rightdart}
remove α0(M, x) from Y

z is the edge below x in Y

z′ is the edge above x in Y

If z and z′ interact and

z 6= nil and z′ 6= nil

Then { remove z from Y

insert z in X}
Endif

Endif

End {while X}

More efficient and complex algorithms, like those
of [3] that adds vertical edges to make the sub-
division’s faces convex and have a complexity in
O(n ln(n) + i) due to this improvement, can be rig-
orously designed that way.

Thus, we have proposed a general mechanism to
constuct and describe any concrete refinement algo-
rithm. Different control structures lead to different
algorithms. A classification can thus be done, based
on the kind of structures and the kind of search
functions that are used.

The 3D refinement

Definition of 3-maps

We model the subdivisions in volumes of the 3D
space with embedded combinatorial 3-maps. They
are defined, like the 2-maps, in terms of darts and
permutations, and are equivalent to the radial edges
structure [21].

Thereby, a 3-map is a 4-tuple M = (B, α0, α1, α2)
where B is a finite set of darts, α0, α1 and α2 are
permutations on B.

These three αi functions must satisfy some in-
tegrity constraints. Firstly, α0 and α1 are invo-
lutions, i.e. α0(α0(x)) = x and α1(α1(x)) = x,
for all x. Secondly, α0 is without fixed point, i.e.
α0(x) 6= x, for all x. Thirdly, α2 is such that α2 ◦α0

is an involution.
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(a) volumic view

-4

-6

2

-2

3
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4
-5

5

-3

1

-1

(b) split view of the faces

(c) details of the 2-links along an edge
(the 2-links are depicted as arrows)

(the 2-links are depicted as grey joints)

Figure 11: A map and the details of the 2-links in a multiple edge

As in the 2D case, darts are interpreted as ori-
ented half-edges. The αi functions i-links darts to
form simple cells in the 3-map. Those cells are also
defined as orbits with respect to α0 and α1.

This way two 0-linked darts make a simple edge
and two 1-linked darts form a simple vertex. A se-
quence of simple edges linked by α1 forms a face
(see Fig. 12). In the following, we consider that α1

is also without fixed point, i.e. that all faces are
closed.

An open face A closed face

Figure 12: Example of faces in a 3-map

Faces are 2-linked to each others, along simple
edges, to form volumes. The constraint defining
α2 ◦ α0 as an involution simply means that the 2-
links are placed pairwise, on whole simple edges,
and with opposite orientations (see Fig. 11).

The classical notions of (non simple) vertices and
edges are defined, for the 3-maps, through an ex-
tended notion of orbits and called multiple topolog-
ical vertices and edges.

If σ and τ are two permutations, then the orbit
〈σ, τ〉(x) of x is the set {σk(τ l(x))}k,l∈N. Intuitively,
is contains all the darts that can be reached from x
by any applications of the two functions σ and τ .

Thus, the (multiple) vertices are the orbits of
〈α1, α2〉. Intuitively, a vertex contains all the simple
vertices that are 2-linked to each other or, in other
words, all the darts that can be reached following
the 1- and 2-links.

The same way, the (multiple) edges are the orbits
of 〈α0, α2〉. Intuitively, an edge corresponds to a
sequence of pairwise 2-linked simple edges. Let us
notice that any number of faces may be 2-linked
pairwise together around the same edge.

Example 3 Fig. 11 shows a 3-map (a), its faces

(b) and the detail of the 2-linkings in a multiple

edge (c). For the numbered darts the permutations

are, in cyclic notation:

• α0 = (-1, 1)(-2, 2)(-3, 3)(-4, 4)(-5, 5)(-6, 6);

• α1 = (-3, -5)(3, 6)(4, -6)(-4, 5) . . . ;

• α2 = (-4)(4)(-5)(5)(-6)(6)(-1, -3, -2)(1, 2, 3).

Here we have: α0(1) = -1 and α0(-1) = 1,

i.e. {1, -1} is a simple edge; α1(-3) = -5 and

α1(-5) = -3, i.e. {-3, -5} is a simple vertex;

α2(-4) = -4, i.e. the simple edge {4, -4} is not 2-

linked; α2(1) = 2, α2(2) = 3 and α2(3) = 1, i.e.

the faces that contain darts 1, 2 and 3 are 2-linked.

Finally, {1, 2, 3, -1, -2, -3} forms a triple edge. ⊓⊔

As shown in Fig. 11, this model naturally sup-
ports the dangling faces. The fact that volumes are
explicitly defined avoids the problem of non man-
ifold edges. However our 3-maps may not contain
dangling simple edge because we stipulate that the
faces are closed.

The non manifold vertices can be handled by the
addition of faces between the volumes sharing a non
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manifold vertex. This aspect is not further detailed
here as we want to focus on our methodologies.

As in the 2D case, the function ϕ = α1 ◦α0 gives
the successor of a dart in its face. This function here
is used to define an orientation of faces. Thereby,
each face contains two oriented faces. For instance,
in Fig. 11 the face {-4, 4, -6, 6, 3, -3, -5, 5} contains
two oriented faces: {-4, -6, 3, -5} and {4, 5, -3, 6}.

Embedding and properties

The geometry of 3-maps is defined by their (lin-
ear) embedding in R

3. As before, we associate to
each vertex a point (0-embedding), to each edge the
interior of the segment joining its two vertices (1-
embedding), to each face the interior of the polygon
formed by its edges and vertices (2-embedding) and,
by extension, the 3-embedding of a volume is the
polyhedra defined by the embeddings of its bound-
ary.

Due to the orientation the interior of a face always
lies to the right of its edges during the traversal
of both oriented faces. Indeed, the two oriented
faces are associated with opposite normal vectors
computed by application of the right-hand rule.

Naturally, we have to impose geometric condi-
tions to insure that the embedding remains well
shaped and can be implicitly defined. On the
one hand, the polygons on which the faces are 2-
embedded have to be planar. Thus, as the polygons
are implicitly defined, the vertices of a face have to
lie in the same plane. On the other hand, the face
boundaries have to be simple, i.e. not self-crossing,
to insure the correct definition of their interiors.

To be precise, the interior of each face must be
connected and have a non null area to make possible
the computation of a normal. Thus, we reject the
eight-shaped face of Fig. 13 (a) whose face interior
is not connected.

But we accept faces that contain internal edges
or have a degenerate embedding as shown in Fig. 13
(b) and (c) where the multiple edges have been
moved further apart to be visible.

In both cases the interior and degenerate simple
edges are in fact 2-linked together in multiple edges.
The (c) case can possibly be used to model dangling
(multiple) edges.

Let us notice that these conditions are equivalent
to the conditions of well embedding for the 2-maps,
limited to single faces. Thus, 2D refinement may
be used as a pre-treatment of non simple faces.

For instance the face of Fig. 13 (a) can be seen as
a 2-map that contains a bounded face (folded back
over itself) and an unbounded one corresponding to
its two oriented faces. Its 2D refinement transforms
it into two bounded faces and the unbounded one

(a) A face
non connected

(b) A face with
interior edges

(c) A face with
a degenerate
branch

Figure 13: Examples of embedded faces

linked by α1. After deleting these 1-links the two
bounded faces can be put back in the 3-map.

As previously, a 3-map embedded without other
constraints may contain secant or overlapped faces
and volumes. Such a 3-map is used to model the
starting set of subdivisions. Its 3D refinement con-
sists in transforming it into a well embedded map.

By extension of the 2D case, a well embedded
3-map is a map whose embedding realizes a par-
tition of R

3, i.e. a 3-map embedded without self-
intersection of overlapping. Formally, it has to sat-
isfy the following conditions, for all darts x and y:

(i) 〈α1, α2〉(x) 6= 〈α1, α2〉(y) ⇒ π0(x) 6= π0(y);

(ii) 〈α0, α2〉(x) 6= 〈α0, α2〉(y) ⇒ π1(x) ∩ π1(y) = ∅;

(iii) 〈ϕ〉(x) 6= 〈ϕ〉(y) ⇒ π2(x) ∩ π2(y) = ∅;

(iv) π0(x) /∈ π1(y);

(v) π0(x) /∈ π2(y);

(vi) π1(x) ∩ π2(y) = ∅;

(vii) the sequence
{

angle(αk
2(x0))

}

k∈[0,...,n]
is in-

creasing, n being the smallest integer such that
αn+1

2 (x0) = x0 and x0 ∈ 〈α2〉(x) such that
angle(x0) = min{angle(y)}y∈〈α2〉(x).

Conditions (i), (ii) and (iii) mean that if x and
y do not belong to the same vertex, edge or face,
then their 0-, 1- or 2-embeddings respectively have
an empty intersection. That notably implies that
their embeddings are distinct and thus that the
2-links are complete, because darts embedded on
equal point, segment or polygon should respectively
belong to the same vertex, edge or face.

Condition (iv), (v) and (vi), with the first three
ones, assure that there is neither intersection nor
overlapping between two embeddings.

Finally, condition (vii) is similar to the condition
(iv) of the 2D case. Here the angle(x) function
returns the angle between the plane containing the
face of x and a fixed plane containing the edge of
x. That means that the faces that share a common
edge are correctly ordered around the axis formed
by this edge. This implies a good orientation of the
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3-map and assures that volumes do not fold back
over themselves. We say that an edge that satisfies
this condition is well sorted.

These conditions can be expressed in a more use-
ful way with the aim of building local tests for the
refinement. For two distinct and non coplanar faces
f and g, we denote their intersection line by ∆(f, g)
(or simply ∆ when the context is clear). The inter-
section cases excluded by conditions (i) to (vi) may
only occur along ∆ and, more precisely, for some
segments of this line.

Thus, to exhibit these simplified conditions, let
us consider the intersection of f with ∆. This in-
tersection is a set of section segments that we de-
note Seg(f, ∆). It can be divided into two subsets:
SegIn(f, ∆) and SegOn(f, ∆) that are respectively
composed of segments whose interior is completely
included in the interior of f and segments that lie
on the boundary of f and correspond to edges of f .

f
7

13

141

2 3

45

6

8 9

10 11

12

p1 p14 p7 p10 p11

∆

Figure 14: Intersection between a face and a line

Example 4 For the face f of Fig. 14 the segment

sets of the intersection between f and the line ∆

are: SegIn(f, ∆) =
{

[ p14, p7]
}

and SegOn(f, ∆) =
{

[ p1, p14], [ p10, p11]
}

. ⊓⊔

The points used to define these segments are asso-
ciated with the darts whose embedding cut ∆. This
way, in Fig. 14, point p1 is the 0-embedding of (the
vertex of) dart 1 and point p7 is the intersection
between ∆ and the 1-embedding (of the edge) of
dart 7. Thus, in the following the section segments
are denoted [ px,∆, px′,∆] (or simply [ px, px′ ]), where
px,∆ (or simply px) is the point defined by dart x.

Let us remark that the definition of segments is
not unique. For instance, in Fig. 14, [ p10, p11] de-
note the same segment as [ p5, p4] or [ p5, p11].

For two (or more) coplanar faces, the conditions
(i) to (vi) come down to the well-embedding of 2-
maps. Indeed, if we consider these coplanar faces
isolated from the rest of the 3-maps and embed-
ded in their underlying plane, they form connected
components of a derived 2-map.

Moreover, the 2-links existing between the darts
of these faces can be interpreted as 1-links in

the derived 2-map. Thus, the conditions of well-
embedding given for 2-maps can be translated for
coplanar faces of a 3-map, without difficulties and
thus are described in detail.

Therefore, a 3-map M is well-embedded if, for
all darts f and g, representing two distinct faces,
and for all segments s = [ px, px′ ] ∈ Seg(f, ∆(f, g))
and t = [ py, py′ ] ∈ Seg(g, ∆(f, g)), the following
conditions hold:

(i′) s ∈ SegIn(f, ∆) ⇒ s ∩ t = ∅;

(ii′) t ∈ SegIn(g, ∆) ⇒ s ∩ t = ∅;

(iii′) s ∈ SegOn(f, ∆) ∧ t ∈ SegOn(g, ∆) ⇒

s ∩ t = ∅

∨

{

s = t ∧〈α0, α2〉(x) = 〈α0, α2〉(y)
}

∨

{

px′ = py ∧〈α1, α2〉(x′) = 〈α1, α2〉(y)
}

∨

{

py′ = px ∧〈α1, α2〉(x) = 〈α1, α2〉(y′)
}

;

(iv′) if f and g are coplanar then the derived 2-map
obtained from the restriction to f and g of M
is well-embedded;

(v′) the sequence
{

angle(αk
2(x0))

}

k∈[0,...,n]
is in-

creasing, n being the smallest integer such that
αn+1

2 (x0) = x0 and x0 ∈ 〈α2〉(x) such that
angle(x0) = min{angle(y)}y∈〈α2〉(x);

Conditions (i′),(ii′) and (iii′) imply that two non
coplanar faces can only have intersections along
shared multiple edges and vertices. Precisely, con-
ditions (i′) and (ii′) say that the section segments
that belong to the interior of the faces f and g have
to be disjoint from any other section segments.

Condition (iii′) expresses that two segments on
the boundaries of f and g are either disjoint or
equal and defined by darts that belong to the same
multiple edge or share a common extremity that is
defined by darts that belong to the same multiple
vertex.

To be complete, let us say that in condition (iii′)
we have only written, to simplify, px′ = py (or
py′ = px) to express that s and t have a common
extremity. We should have added that the interior
of s and t have to be disjoint, i.e. their intersection
reduces to a point, and that we suppose that the
two points used to define each segment are ordered
from the left to the right, to avoid the handling of
the symmetrical cases.

Basic geometric operators

As for the 2-maps, the 3-maps, and the operators
needed to build and handle them, are algebraicly
specified. This specification is quite similar to the
previously given one, with one more basic generator
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l2 used to insert the 2-links [24]. As another speci-
fication example would be of little interest here, we
only informally present the operators we use fur-
ther.

To carry out the 3D refinement, we need only four
simple operators on top of the classical ones that
allow the building and handling of maps. Those
four geometrical operators are presented in Fig. 15
which depicts their actions on a map M .

The operation iv(M, x, p) inserts, in M , a vertex
embedded on p in the edge of x. The ie(M, x, p, q)
operation inserts a double edge embedded on seg-
ment [p, q] in such a way that the vertex embedded
on p is inserted in the edge of x.

The operation i2e(M, x, p, q, r) is a shortcut to
insert two double edges, embedded on [p, q] and
[q, r]. It is used to insert the edge corresponding
to [q, r] in the interior of the face of x, attaching it
to the face boundary at point p. The last operation
cutf(M, x, y, p, q) cuts a face in two parts separated
by a double edge embedded on [p, q], between the
darts x and y.

y

x

p
q r

i2e(M,x,p,q,r)

x

p q

cutf(M,x,y,p,q)

x

y

A map M

p

x

y

iv(M,x,p)

y

y

x

p q

ie(M,x,p,q)

Figure 15: Geometrical operators on 3-maps

Finally, let us note that it can be formally proved
that these operations preserve all the characteristic
topological properties given in the definition of 3-
maps. There is no special geometrical condition for
the used points p and q except that they have to lie
in the plane of the face of the given darts x or y.

However, to obtain the expected geometric re-
sults, p should belong to the edge of x and seg-
ments [p, q] and [q, r] should completely lie in the
face interior and not cut the face boundary. These
geometrical conditions are always satisfied in the
following 3D-refinement process.

The high level 3D refinement

As previously, the 3D refinement is defined through
a set of elementary and independent operations de-
scribed by the rules the system R3D. Table 4 con-

tains the formal descriptions of rules that are graph-
ically depicted in Fig. 16.

Each rule describes a high-level transformation of
the map that is described further and only involves
the four operators detailed in the previous section.

As we want to focus on face intersections, we
do not detail here the aspects of rewriting tech-
niques that we have already presented for the 2D
case. Thus, we directly use the simplified syntax
presented for the 2D case.

x

y

x xy

y

y

R eqplane

x

R eqface

x

x

R cutface

y

x y
x

y
R eqedge

Figure 16: Graphical illustration of R3D (2-links are

drawn as black joints)

The first rule, Rcutface, realizes the intersection
of faces. When the planes of the faces of two darts x
and y are secant, the faces of x and y are cut along
the intersection line. This operation is detailed in
the next section. Small replicas of the subdivided
faces are separately depicted down flat, in Fig. 16.

The second rule, Reqplane, treats the case of
two coplanar faces. As said before, this operation
amounts to intersecting two polygons in a plane and
is not detailed further. It uses the 2D refinement
and conversion procedures to transform faces of a
3-map into a 2-map and, conversely, the bounded
faces of a 2-map into faces of the 3-map.

The third rule, Reqface, completes the second rule
and is used when two faces are embedded on two
equal polygons. In this case, one of the two faces,
here the face of y, is deleted by the delface(M, y)
operator. The faces that are 2-linked to the deleted
face are then 2-linked to the other face, by Reqedge.

The last rule, Reqedge, merges edges embedded on
equal segments and not already 2-linked. In fact,
the 2-links of edges of x and y are merged so as to
sort the 2-linked faces of x and y around the axis
formed by the edges.
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Table 4: Rewrite system R3D for the refinement of 3-maps

Rcutface :
M

cutface(M, x, y)
if

(

x∈ M ∧ y ∈ M

secant(M,x, y)
Reqplane :

M

fusionface(M, x, y)
if

8

>

<

>

:

x∈ M ∧ y ∈ M

eqplane(M,x, y)

¬eqface(M, x, y)

Reqface :
M

delface(M, y)
if

8

>

<

>

:

x∈ M ∧ y ∈ M

eqpoly(M,x, y)

¬eqface(M, x, y)

Reqedge :
M

fusionedge(M, x, y)
if

8

>

<

>

:

x∈ M ∧ y ∈ M

eqseg(M,x, y)

¬eqedge(M,x, y)

Roughly speaking, these last two rules are mainly
used to link adjacent volumes. The faces of the vol-
umes are first subdivided by the first two rules. The
contact zone between the volumes is thus reduced
to a set of equal faces that are pairwise merged.

To merge two faces, the rewrite system succes-
sively executes the third and fourth rules. This way,
the second face is deleted by Reqface and then each
edge of the first face is merged by Reqedge with the
edges that were incident to the second one.

The rule Reqedge is also used to complete the miss-
ing adjacency relationships and thus to achieve the
topological restructuring of the map.

The refinement of a given map amounts to trying
to execute each rule with each couple of darts (i.e.
each couple of faces or of edges). This naturally
leads to an algorithm whose complexity is in O(n2),
where n is the number of darts.

Classical strategies that limit the number of
tested couples can improve the efficiency of com-
putations, as for instance the use of bounding
boxes. In this case, a multidimensional searching
of the k couples of secant boxes can be done in
O(k +n.ln2n), where n is the number of boxes [34].

Such strategies can be described formally with
the use of control structures enhancing the initial
rewrite system, as explained in the 2D case.

Intersection of transversal faces

The more delicate part of the refinement is the in-
tersection of non coplanar faces. In fact, the high
level rule Rcutface is defined as a set of rewrite rules,
given in Table 5, that locally subdivide the two faces
as shown in Fig. 17.

The principle of the subdivision is to detect the
section segments of the intersection line that vio-
late the condition of well embedding. When such a
segment is found, the two faces are simultaneously
subdivided by the insertion of new edges embedded
on this segment and merged in a multiple edge.

By now, let us assume that we have a function
∆(M, x, y) that returns the intersection line ∆ be-

tween the faces of x and y in map M , and two func-
tions, SegIn(M, x, ∆) and SegOn(M, x, ∆), that
return respectively the section segments of the in-
tersection line ∆ that are inside and on the bound-
ary of the face of x, in a map M .

When two section segments of ∆ overlap, the way
the two faces will be subdivided depends on the
relative arrangement of the extremities of the seg-
ments along the line ∆. Assuming that we have a
coordinate system on ∆, then comparing the points
amounts to comparing their abscissae in this coor-
dinate system.

In the following and in Table 5 we write px = py,
px < py, and px ≤ py, to express that the abscissa
of the point px defined by dart x is equal to, strictly
lower than, and lower or equal to, that of py.

The rewrite system for the face/face intersection
detailed where and how the faces are subdivided,
by describing all the positional cases for two over-
lapped section segments [ px, px′ ] and [ py, py′ ] of the
face of x and y. This amounts to studying all pos-
sible arrangements of px, px′ , py and py′ along ∆.

In the rules of Table 5, x and y represent two se-
cant and distinct faces (the conditions of Rcutface).
Their conditions express in which set the section
segments are chosen and the order of their extremi-
ties. Rule Rcase1

is fully detailed. In the other ones
only the pertinent information are written to avoid
an overflow of formulae.

Rule Rcase1
inserts, with the iv operator, a

new vertex in the edges of x′ and y that are se-
cant at point px′ on ∆. In the case of Rcase2

,
the segment [ py, px′] lies in both face interiors.
Thus, the rule inserts, in the two faces, a new
edge whose vertices are embedded on py and px′ .
This operation is performed by the combination
ie(ie(M, x′, px′ , py), y, py, px′) of the ie operator.

For Rcase3
, the segment [ py, py′ ] is completely in-

cluded in segment [ px, px′ ] and thus lies in the in-
terior of the face of x. This segment being already
included in the boundary of the face of y, nothing
has to be done for this face. On the other hand,
it lies inside the face of x, but is not incident to
this face boundary. The i2e operator is thus used
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Table 5: Rewrite system for faces intersection

Rcase1
:

M

iv(iv(M, x′, px′), y, py)
if























x ∈ M ∧ y ∈ M

[ px, px′ ] ∈ SegIn(M, x, ∆(M, x, y))

[ py, py′ ] ∈ SegIn(M, y, ∆(M, x, y))

px ≤ px′ < py ≤ py′

Rcase2
:

M

ie(ie(M, x′, px′ , py), y, py, px′)
if px < py < px′ < py′

Rcase3
:

M

cutf(i2e(M, x, px, py, py′), y, y′, py, py′)
if

{

[ py, py′ ] ∈ SegOn(M, y, ∆(M, x, y))

px < py < py′ < px′

Rcase4
:

M

cutf(cutf(M, x, x′, px, px′), y, y′, py, py′)
if px = py < px′ = py′

x

x’

y

y’y’

Case 2 : px < py < px’ < py’

x y

y’

x
y

x’

Case 3 : px < py < py’ < px’

x’

y
x

x

x’

y

y’

x’

y’

x

x’

y

y’

Case 4 : px = py < py’ = px’

x

x’

y

y’

x y

y’

x’

Case 1 : px <= px’ = py <= py’

Figure 17: Four cases of faces intersection

to insert two double edges as previously explained.

In the last rule, Rcase4
, the segment [ px, px′] that

is equal to segment [ py, py′ ] separates the two faces.
A double edge is thus inserted between x and x′,
and a second one between y and y′, to cut the two
faces.

There are three other cases not given here that
have comparable symmetrical shapes. They all use
the operators described and treat the other possible
arrangements of points px, px′ , py and py′ .

Each of these 7 arrangement cases is subdivided
in 4 cases depending on the set, SegIn or SegOn, in
which the section segments are taken. For segments
taken in SegIn the cutting out are performed as
described in the rules.

For a segment [ px, px′ ] taken in SegOn, the edge
of x is on the ∆ line and the vertices or edges
insertions are not necessary and nothing is done
(as shown for the face of y in Rcase3

). The sub-
cases study does not involve difficulties and is not
detailed. Altogether, the rewrite system for the
face/face intersection contains 28 rules (4 ∗ 7).

The computation of the two needed segment sets,
SegIn(M, x, ∆) and SegOn(M, x, ∆), is done in
three steps. First, the intersection of the edges and
vertices of all darts of the face of x with the ∆
line are computed. Then, the intersection points
are sorted by increasing abscissa along ∆. Finally,
these points are pairwise grouped to form the ex-
pected segments.

The only difficulty is to eliminate the possible
multiple definitions of section segments that may
occur when a multiple edge lies on ∆, as pointed
out in the definition of SegOn.

An efficient strategy can be defined to intersect
two faces. It consists in building first the set of sec-
tion segments for the two faces. Then, to sort the
segments along ∆. During this sorting the over-
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lapped segments can easily be found and the rules
applied where needed. This strategy has been de-
veloped in a previous paper [35] and is not detailed
here.

Examples of 3D refinement

Faults refinement

Figure 18: A set of secant faces

The first example comes from an experimentation
of refinement in the domain of geology. Faults in
the subsoil are modeled by different secant faces of
a 3-map. They correspond to boundaries between
geological strata. An example is given in Fig. 18.
The left subfigure is a front view of the faults, while
the two right ones show them from two other points
of view.

The 3D refinement produces a subdivision in vol-
umes of the modeled subsoil. Fig. 19 shows the re-
sult of the refinement. Let us notice that it contains
a large number of dangling faces that, in fact, be-
long to the exterior volume. The computed interior
volumes are highlighted in the right subfigures.

Figure 19: Its refinement and the computed volumes

In this limited case our 3D refinement is similar
to previous ones restricted to the geology domain
[36].

Polyhedral volumes refinement

In this second example, we present the refinement
of more classical solids similar to those used in
CAD. Fig. 21 represents four secant polyhedral
solids modeled as distinct and overlapped connected
components of the same 3-map.

Figure 21: A 3-map modeling polyhedral solids

Let us notice that this map contains overlapping
faces, that the cylinder goes through the flat box
interior without cutting its boundary and that the
rightmost long parallelepiped touches the bottom
one in a single vertex.

Fig. 22 shows the resulting 3D refinement. The
holes created in the faces of the flat box are modeled
by inserted edges that link the outside boundary of
each face to the hole boundary lying inside of it.

Figure 22: The refinement of the solids
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Figure 20: Exploded view of the inner volumes

Fig. 20 depicts the inner volumes of the refine-
ment. We have deleted the exterior volume to high-
light the interior ones. This exterior volume groups
the faces that form a shell around the whole object
and is implicitly defined in all 3-maps.

Thus, the figure shows the interior volumes com-
puted by the refinement, that is to say the internal
structure of the object. We have shifted them to
improve the view. Some of the volumes have been
rotated to provide a better viewpoint.

Intersection of two cones

Figure 24: Two secant cones

The last example is the use of the 3D refinement
to compute the intersections between two cones
modeled with a large number of faces. Fig. 24 shows
the initial objects put in a same map before their

refinement.
Fig. 23 shows the resulting 3D refinement where

the internal structures have been separated out.
The volumes obtained correspond to the possible
boolean operations between the starting objects.
The leftmost solid (a) is the union of the two cones,
the middle one (c) is their intersection and the other
ones, placed around, are the pieces that form the
symmetrical difference between the two cones, i.e.
(e) is the first difference and (b) plus (d1/d2) form
the second one.

Conclusion

First, we have defined the refinement of subdivi-
sions in faces and volumes of 2D and 3D spaces.
The mathematical models of combinatorial maps,
mainly described by permutations and orbits, have
helped us to express formal conditions of well em-
bedding in both cases.

Secondly, by the way of algebraic specifications,
we have formally defined topological and geometri-
cal operations to build and handle embedded maps.
At this level we were able to prove that the manip-
ulated objects and functions satisfy the integrity
constraints given for the mathematical model.

Finally, the use of rewrite systems has lead us
to express a complex problem as a collection of
elementary and independent transformations. We
have thus completely and formally described 2D
and 3D refinements of embedded maps. We have
shown how some logical properties of the described
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(a) (b) (c) (d1/d2) (e)

Figure 23: Exploded view of the volumes

process can be proved.

Beyond the refinement of a set of subdivisions,
this operation is in fact a general process of nor-
malization of 2D and 3D subdivisions and, in fact,
of all equivalent models in boundary representation.

Operations on maps and rewrite rules have first
been implemented in a graphical Prolog. This log-
ical prototyping allowed us to quickly verify in a
practical way, but with reduced input data, the va-
lidity of our specifications.

Thus the formalism we used, allied to rewriting
expressiveness, makes easier a proper and rigorous
design of algorithms. It is also a nice starting point
for rapid prototyping and further design of efficient
algorithms.

The two refinements have been implemented in
the C language for a Sun workstation, where dif-
ferent kinds of strategies were studied for efficient
execution of the rewrite systems. Firstly, we have
done a straightforward implementation of the sim-
ple algorithm whose complexity is in O(n2).

Next, classical methods, such as the plane sweep
algorithms in 2D and the use of bounding boxes
for the 3D, have been implemented to improve the
complexity until achieving the best known result.
Here again the clear separation of logic and control
has helped us.

Questions of approximation we have not dealt
with do not cast doubt on the structure of the
rewrite system, because they are precisely localized.
In fact, they only take place in the geometrical tests
that appear in the conditions of the rewrite rules.
Therefore, the use of an exact arithmetic would only
affect these parts and would of course be without
effect on the topological treatments.

The extensions we are currently working on aim
to add to each dart an attribute that enumerates
the object(s) it belong to, which extends the active
attribute of the cells of SGC [11] and is similar to
the historic attribute of [8]. This enhancement has
already be done for the 2D case [37]

The algorithms will be completed to take into
account this attribute during the refinement stage.
Our goal is to directly evaluate, after refinement,
the result of a classical boolean operation between
many objects modeled in the same map. To sum up,
the interest of this method is a sound definition of
efficient boolean operations rooted in the topology
of objects.
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