
Designing and proving correct a convex hull algorithm with

hypermaps in Coq ✩

Christophe Brun, Jean-François Dufourd, Nicolas Magaud

Université de Strasbourg - Laboratoire des Sciences de l’Image,
de l’Informatique et de la Télédétection (LSIIT, UMR 7005 CNRS-UDS)
Pôle API, Boulevard Sébastien Brant, BP 10413, 67412 Illkirch, France

{brun,dufourd,magaud}@lsiit-cnrs.unistra.fr

Abstract

This article presents the formal design of a functional algorithm which computes
the convex hull of a finite set of points incrementally. This algorithm, specified
in Coq, is then automatically extracted into an OCaml-program which can be
plugged into an interface for data input (point selection) and graphical visual-
ization of the output. A formal proof of total correctness, relying on structural
induction, is also carried out. This requires to study many topologic and geomet-
ric properties. We use a combinatorial structure, namely hypermaps, to model
planar subdivisions of the plane. Formal specifications and proofs are carried
out in the Calculus of Inductive Constructions and its implementation: the Coq
system.

Key words: convex hull, hypermaps, formal specifications, computer-aided
proofs, Coq system.

1. Introduction

Our general aim is to lead a formal survey in geometric modeling and com-
putational geometry in order to improve the programming techniques and ensure
the algorithms correctness. In this paper, we present a formal case study in com-
putational geometry on a classical problem which involves elementary geometric
objects: computing the incremental convex hull of a finite collection of planar
points.

✩This work is partly supported by the research project GALAPAGOS, French ANR

Preprint submitted to Computational Geometry Theory and Applications July 6, 2010

The originality of the means we use to achieve our purpose rely on one hand
on the fact that the specifications and the formal proofs of programs are expressed
in the formalism of the Calculus of Inductive Constructions implemented in the
Coq system, and on the other hand on the fact that we work in a topology-based
geometric modeling framework where the planar subdivisions are described by
combinatorial oriented maps [34]. But, in order to be more general for the sub-
sequent applications, we first use combinatorial hypermaps and then specialize
them into combinatorial oriented maps.

A (two-dimensional) hypermap is a simple algebraic structure consisting of a
finite set whose elements are called darts and of two permutations on this set. It
allows to model surface subdivisions (into vertices, edges and faces) and to dis-
tinguish between the topologic and geometric aspects of the studied objects. For
years, we have formally described hypermaps in order to handle subdivisions and
their transformations as well as to prove topologic properties of surfaces [9, 11].
Our hypermap specification is done by structural induction, which makes the
constructive definition of operations and the proofs of surface properties easier.
However, for the moment, we almost exclusively worked on the combinatorial
topology of surfaces, but we want to deal with geometric embeddings as well.
That is the reason why we begin by studying a classical plane problem which
is not only rich enough to highlight many interesting problems, but also simple
enough to reveal them easily and completely.

The geometric aspects we consider are particularly simple but fundamental
in computational geometry. The embedding is straightforward and maps subdi-
vision vertices into points, edges into line segments and faces are represented as
polygonal frontiers. However, the question of the plane orientation is crucial. In
our framework, it is captured using Knuth’s axiom system for orientation [25].
This system defines orientation according to the order in which a triple of points
is enumerated in the plane (either clockwise or counter-clockwise). One of its
advantages is that it allows to isolate the required numerical tests and in a first
step to elude the difficult numerical accuracy problems. In fact, we do not ad-
dress these issues in this first attempt which instead focuses on the correctness
of data structures and related operations. Real numbers are idealized using the
axiom system provided in the Coq library.

In this setting, our work consists in designing a functional convex hull al-
gorithm, automatically extracting a program in OCaml augmented with input
handling and a graphical display of the result, and formally proving its total
correctness. This proof consists in checking the termination of the algorithm as
well as highlighting several useful topologic and geometric properties. All our

2

specification and proof development was interactively assisted by the Coq proof
assistant [1, 21, 33].

In Section 2, we list and briefly survey some related works about formalized
proofs in combinatorial topology and computational geometry. In Section 3, we
recall some basic mathematical definitions and properties on the combinatorial
oriented hypermaps and then specify them in Coq. In Section 4, we propose a
numerical model of the plane based on real numbers and slightly enlarge Knuth’s
axiom system for orientation. In Section 5, we describe our functional algorithm
to build a convex hull incrementally. In Section 6, we formalize this algorithm in
the Coq proof assistant. In Section 7, we explain how to extract from this de-
scription an operational program in OCaml. In Section 8, we present and prove
the topologic properties required to establish the correctness of this algorithm.
In Section 9, we do the same with the geometric properties. Finally, some con-
clusions and future works are given in Section 10.

In the following, the Coq notions required to understand the developments
are progressively introduced, but the details of the proofs are out of the scope of
this paper.

2. Related work

2.1. Convex hull computation and subdivision modelling

The computation of the convex hull of a finite set of points is one of the
first and most important concepts studied in computational geometry. It has
several different definitions in the literature. There are also several construction
methods, such as the incremental algorithm, Jarvis’ march or Graham’s scan
[4, 7, 8, 14, 31, 32].

In a two-dimensional setting, the convex hull is a polygon, but its construction
often requires to handle broken lines or even several polygons (e.g. in the divide
and conquer approach). More generally, geometric algorithms deal with irregular
subdivisions of surfaces into vertices, edges and faces. Even if they may be fairly
simple in most computational geometry algorithms, these subdivisions are worth
being handled consistently. That is why, in our work, we have a strong focus
on these subdivisions and their properties. Nowadays, a good way of studying
geometric objects is to distinguish between their topological structure and their
embedding. Topology, as a combinatorial tool, may be defined via a concrete
datatype such as half edges [35], winged edges [27] or quad-edges [20].

3

A widespread approach in computer science is to encourage abstract repre-
sentations of data. Combinatorial oriented maps of dimension two [34] allow to
describe, in an algebraic way, general subdivisions of closed orientable surfaces,
which is exactly what we require for our study of convex hulls. However, we
prefer to work first with combinatorial hypermaps [6] which are more general,
homogeneous in the two dimensions and easier to specialize depending on our
needs. Thus, we shall be able to reuse our work dealing with hypermaps to study
more complex subdivisions. Then, we constrain the hypermaps in order to cap-
ture combinatorial oriented maps exactly. Combinatorial oriented maps and their
extensions have been studied extensively and led to several implementations in
geometric modelling [15, 22, 26]. One of the implementations was carried out in
the library CGAL [16].

In addition to topology, we need to embed hypermaps (and maps) into the
oriented Euclidian plane to be able to formalize what a convex hull is. As usual,
our embedding consists in mapping vertices into points of the plane, all other
objects being obtained by linearization. We thus rely on the axiom system for
geometric computation and orientation proposed by D. Knuth in his book “Ax-
ioms and Hulls” [25]. This axiom system, based on orientation properties of
triples of points in the plane, allows to isolate numerical accuracy issues in com-
putations and let us focus on the logic tests required in the algorithms. This
approach is particularly well-suited to carry out formal proofs of correctness of
the considered algorithms.

2.2. Assisted proofs in computational geometry

Formal proofs in the field of computational geometry, especially focusing on
convex hull algorithms have been carried out. Pichardie and Bertot use the Coq
proof system to develop a formal proof of correctness of the incremental algorithm
as well as Jarvis’ march [30]. They also consider Knuth’s axiom system but they
simply represent convex hulls as lists of points which lead to several technicalities
and is likely to prevent any further extension, especially in a three-dimensional
setting. Meikle and Fleuriot [28] use the Isabelle proof system to formally prove
the correctness of a program computing convex hulls using Graham’s scan. Their
approach relies on Hoare logic, which prevents them from having a simple func-
tional description of the program.

None of the above-mentioned works relies on any topological structure. How-
ever, hypermaps have been used highly successfully to model planar subdivisions
in the formalization and proof of the four-color theorem in Coq by Gonthier et
al. [17, 18]. Their specification allows to prove some significant results including
a proof of the Jordan curve theorem which forms the cornerstone of the proof of

4

the four-color theorem. However, their specification approach as well as the proof
techniques (using reflection in Coq) [19] are fairly different from the methodology
we follow in this paper. An in-depth comparison can be found in [13].

At Strasbourg University, the library specifying hypermaps, onto which our
present work on convex hulls is built, was successfully used to prove some basic
results such as the genus theorem, Euler formula for polyhedra [12] and a discrete
version of the Jordan curve theorem [13]. This library was also used to carry
out a formal proof of correctness of a functional algorithm to perform image
segmentation by merging adjacent faces and to develop a time-optimal C-program
[10].

3. Hypermaps, combinatorial oriented maps and their specification in
Coq

In this section, we follow the presentation carried out in [12] but restrict
ourselves to the notions relevant to this work. We introduce the notions of com-
binatorial hypermaps and maps to represent our input data, intermediate com-
putations, and the resulting convex hull. We start with mathematical definitions
and then explain how to formalize such definitions in the framework of Coq.

3.1. Mathematical aspects

3.1.1. Definitions

Hypermaps are one of the most general structures to describe finite surface
subdivisions topologically.

Definition 1 (Hypermap and combinatorial oriented map).
(1) A (two-dimensional) hypermap is an algebraic structure M = (D,α0, α1),
where D is a finite set, the elements of which are called darts, and where α0, α1

are permutations on D.
(2) When α0 is an involution without fixpoint on D (i.e. ∀x ∈ D, α0(α0(x)) = x
and α0(x) 6= x), then M is called a combinatorial oriented map.
(3) For each dimension k ∈ {0, 1}: if y = αk(x), y is the k-successor of x, x is
the k-predecessor of y, and x and y are said to be k-linked together.

Thus the combinatorial oriented maps are a subclass of the class of hypermaps.
The notion of hypermaps is well suited to carry out formal proofs [18]. However
combinatorial oriented maps are much easier to use in geometric modeling [15,
16, 22, 26, 34].

Example 1. In Fig. 1, as functions α0 and α1 on D = {1, . . . , 11} are permu-
tations (i.e. one-to-one correspondences), M = (D,α0, α1) is a hypermap. It

5

α0

α1

Figure 1: An example of hypermap

represents a subdivision of the plane with a triangle and a rectangle adjacent
to one another; it also features a hanging line segment as well as an isolated
segment.

In our drawings of hypermaps on surfaces, we represent each dart as a simple
curved segment (a line segment in the plane) oriented from a bullet to a small
stroke: 0-linked (resp. 1-linked) darts share the same small stroke (resp. bullet).
By convention, we always adopt that k-successors turn counterclockwise on the
plane around small strokes and bullets. Note that our hypermap definition allows
the void map (i.e. D = ∅) and fixpoints with respect to k.

3.1.2. Cells of hypermaps

The topological cells of a hypermap (i.e. its vertices, edges, faces and con-
nected components) can be combinatorially defined, mainly through the classical
notion of orbit.

Definition 2 (Orbits and hypermap cells).
(1) Let f be a permutation in a finite set D. The orbit of x ∈ D for f is the dart
sequence 〈f〉(x) = (x, f(x), f2(x), . . . , fp−1(x)), where p, called the period of the
orbit, is the smallest integer such that fp(x) = x.
(2) In an hypermap M = (D,α0, α1), 〈α0〉(x) is the 0-orbit or edge of dart x,
〈α1〉(x) its 1-orbit or vertex, 〈φ〉(x) its face, for φ = α−1

1
◦ α−1

0
.

(3) The connected component of x in M , denoted by 〈α0, α1〉(x), is the set of
darts which are accessible from x by any composition sequence of α0 and α1.

Faces are defined, through φ = α−1

1
◦ α−1

0
, for a dart traversal also in coun-

terclockwise order, when the hypermap is drawn on a surface. Then, every face
which encloses a bounded (resp. unbounded) region on its left is called internal

(resp. external).

6

Example 2. In Fig. 1, the hypermap M contains 5 edges (strokes), 6 vertices
(bullets), 4 faces and 2 connected components. For instance, 〈α0〉(7) = (7, 6, 8)
is the edge of dart 7, 〈α1〉(7) = (7, 3, 4) its vertex. Regarding φ which is equal to
α−1

1
◦α−1

0
, we have φ(2) = 7, φ(7) = 9 and φ(9) = 2. Then the (internal) face of 2

is 〈φ〉(2) = (2, 7, 9). In addition the (external) face of 3 is 〈φ〉(3) = (3, 10, 11, 8, 5).

Since α0 and α1 are permutations, it is clear that, for Π = 〈α0〉, 〈α1〉, 〈α
−1

1
◦

α−1

0
〉 or 〈α0, α1〉, y ∈ 〈Π(x)〉 is equivalent to x ∈ 〈Π(y)〉. In a combinatorial

oriented map, each edge is composed of exactly 2 darts. This is standard practice
in geometric modeling to represent orientable surface subdivisions [15, 16, 22, 26,
34]. We shall adopt this approach later in this work.

3.1.3. Planarity and Euler formula

Let d, e, v, f and c be the numbers of darts, edges, vertices, faces and con-
nected components of a hypermap M = (D,α0, α1).

Definition 3 (Euler characteristic, genus, planarity).
(1) The Euler characteristic of M is χ = v + e + f − d.
(2) The genus of M is g = c − χ/2.
(3) When g = 0, M is said to be planar.

Example 3. In Fig. 1, the Euler characteristic of M is χ = 6 + 5 + 4 − 11 = 4
and its genus g = 2 − χ/2 = 0. Consequently, the hypermap M is planar.

A planar hypermap satisfies the property χ = 2 × c, which is a generalization of
the well-known Euler formula.

3.1.4. Embedding

We only consider embedding issues for combinatorial oriented maps. For
this class of hypermaps, the embedding into the plane is a mapping of vertices
into distinct points, edges into straight lines connecting two points (being two
embedded vertices), and faces as possibly open regions of the plane. For more
details on embeddings and on the planarity, the reader is refered to [12, 13].

3.2. Specifications in Coq

Coq [1, 33] is the implementation of the Calculus of Inductive Constructions,
which is a type theory as well as a powerful higher-order intuitionistic logical
framework designed to formalize and prove mathematical properties in an in-
teractive way. All the definitions of the previous section are formalized in this
framework.

7

3.2.1. Preliminary specifications

We first define a type for the dimensional indexes 0 and 1 of an hypermap. It
consists in an inductive type dim:

Inductive dim : Set := zero : dim | one : dim.

All objects being typed in Coq, dim has the type Set of all concrete types.
Its constructors are the constants zero and one. For each inductive type, the
generic equality predicate = is built-in but its decidability is not, because the logic
of Coq is intuitionistic. For dim, the latter can be established as the following
lemma (note that in Coq ~ stands for logic negation, + or \/ for disjunction and
/\ for conjunction):

Lemma eq_dim_dec : forall (i:dim)(j:dim), {i=j} + {~i=j}.

Once it is made, its proof is an object of the sum type {i=j}+{~i=j}, i.e. a
function, named eq dim dec, which tests whenever its two arguments are equal
or not. This lemma is interactively proved with some tactics, the reasoning being
a simple structural induction on both i and j, which boils down to a simple
case analysis here. Indeed, from each inductive type definition, Coq generates an
induction principle, usable either to prove propositions or to build total functions
on the type.

Next, we identify the type dart and its equality decidability eq dart dec with
the built-in type of natural numbers nat and eq nat dec. Finally, to manage
exceptions, a nil dart is a renaming of 0:

Definition dart := nat.

Definition eq_dart_dec := eq_nat_dec.

Definition nil := 0.

We choose a constructive point of view for hypermaps, which is close to the
usual incremental building of surface subdivisions in geometric modeling rather
than considering an observational point of view with an already built set of darts
equipped with all its permutations, as it is done in [18].

3.2.2. Free maps

The hypermaps are now approached by a general notion of free map, thanks
to a free algebra of terms of inductive type fmap with 3 constructors, V, I and L,
respectively for the empty (or void) map, the insertion of a dart, and the linking

of two darts:

8

Inductive fmap : Set :=

V : fmap

| I : fmap -> dart -> point -> fmap

| L : fmap -> dim -> dart -> dart -> fmap.

Example 4. The hypermap M in Fig. 1 can be modeled by the free map repre-
sented in Fig. 2 where the 0- and 1-links by L are represented by arcs of circles,
and where the orbits remain open. For instance, a submap of the hypermap M
of Fig. 2, consisting of darts 3, 2, 9 and 10 is represented by the following term
in Coq : (L (L (L (I (I (I (I V 3 p3) 2 p2) 10 p10) 9 p9) zero 3 2)

one 10 2) zero 10 9).

When darts are inserted into a free map, they come together with an embedding
point which is a couple of real numbers. As the reader may see from Fig. 2, some
geometrical consistency properties must be enforced. For instance, the points p2
and p10 respectively associated with 2 and 10 must be equal.

Coq also generates an induction principle on free maps. In the following, the
use of the constructors will be constrained by preconditions to avoid meaningless
free maps. The corresponding subtype of the hypermaps will be characterized by
an invariant, called inv hmap, systematically used in conjunction with fmap (see
Section 3.2.3 for details).

Figure 2: Hypermap example with its incompletely linked orbits

Next, observers of free maps can be defined. The predicate exd expresses
that a dart exists in a hypermap. Its definition is recursive, which is indicated
by the keyword Fixpoint. It proceeds by pattern matching on m written match

m with.... The attribute {struct m} allows Coq to verify that the recursive
calls are performed on smaller fmap terms, thus ensuring termination. The result
is either False or True, the two basic constants of Prop, the built-in type of
propositions. Note that terms are in prefix notation and that is a place holder.
Proving the decidability exd dec of exd is straightforward by induction on m.

Fixpoint exd (m:fmap)(d:dart) {struct m} : Prop :=
9

match m with

V => False

| I m0 x _ => x = d \/ exd m0 d

| L m0 _ _ _ => exd m0 d

end.

Then, a restriction of function αk, denoted A, is defined. It is designed so that
its orbits can not be closed. However, because Coq only allows total functions to
be defined, A is extended with the nil dart when it will otherwise close the orbit
(the inverse A 1 being similar):

Fixpoint A (m:fmap)(k:dim)(d:dart) {struct m} : dart :=

match m with

V => nil

| I m0 _ _ => A m0 k d

| L m0 k0 x y =>

if eq_dim_dec k k0

then if eq_dart_dec x d then y else A m0 k d

else A m0 k d

end.

Predicates succ and pred express that a dart has a k-successor and a k-
predecessor (non-nil), with the decidability properties succ dec and pred dec:

Definition succ (m:fmap)(k:dim)(d:dart) : Prop := A m k d <> nil.

Example 5. In Fig. 2, A m zero 6 = 8, A m zero 4 = nil, succ m zero 6,
~succ m zero 4, A 1 m one 9 = 8, pred m one 9.

3.2.3. Hypermaps

As said previously, preconditions written as predicates are introduced for
operators I and L. The precondition prec I for I states that the nil dart can
not be inserted into a free map and that a dart x can only be inserted if it does
not already belong to the free map. The precondition prec L for L verifies that
the darts x and y we want to link to one another are actually already inserted in
the free map, that x has no successor at the involved dimension and that y has
no predecessor at this dimension either. Finally, it also prevents a link from x to
y from being added if it would close the orbit of x.

Definition prec_I (m:fmap)(x:dart) : Prop :=

x <> nil /\ ~ exd m x.

10

Definition prec_L (m:fmap)(k:dim)(x:dart)(y:dart) : Prop :=

exd m x /\ exd m y /\

~ succ m k x /\ ~ pred m k y /\ cA m k x <> y.

If I and L are only used when the appropriate precondition holds, the built free
map necessarily has open orbits. Such a condition was required to make merging
orbits by concatenation easier. It also reduces the number of links required in the
computation of the convex hull. Overall the built free map satisfies the invariant :

Fixpoint inv_hmap (m:fmap) : Prop :=

match m with

V => True

| I m0 x t p => inv_hmap m0 /\ prec_I m0 x

| L m0 k x y => inv_hmap m0 /\ prec_L m0 k x y

end.

Such a hypermap was already drawn in Fig. 2. In fact, thanks to other
operations namely cA and cA 1, it can always be considered as a true hypermap
exactly equipped with operations αk.

Indeed, the operations cA and cA 1 close A and A 1; thus we can do as if the
k-orbits were closed. In addition, for any k (A m k) and (cA m k) extend the
function αk to darts which do not belong to the map m and return the dart nil.

Example 6. In Fig. 2, cA m one 4 = 7, cA 1 m one 7 = 4, cA m one 11 =

nil, cA 1 m one 11 = nil. In addition, when the input dart does not belong to
the map, we have cA m zero 12 = nil and cA 1 m zero 12 = nil.

Fundamental properties we prove are: for any m and k, (A m k) and (A 1

m k) are injections inverse of each other, and (cA m k) and (cA 1 m k) are
permutations inverse of each other, and are closures. The reader interested in the
technical details is referred to our formal proof development [1].

Finally, traversals of faces are based on a function F and its closure cF (see
[12] for details), which correspond to φ as defined in Definition 2. Properties
similar to the ones of A, cA are proved for F, cF and their inverses F 1, cF 1.

Example 7. In Fig. 2, F m 4 = nil, cF m 4 = 6.

Further topologic properties may be considered while proving the correctness
of our convex hull algorithm. In addition, invariants dealing with geometry must
be defined. So we now present the geometric setting in which our computations
take place.

11

4. Geometric setting

Convex hull computations do not only rely on topology but also on geometric
properties of the involved points. In this article, we choose to work with Carte-
sian geometry in two dimensions and we consider each point p to be a couple of
reals which are its coordinates in the plane (i.e. p = (xp, yp) with xp, yp ∈ R).
To compute convex hulls incrementally, we need a predicate to determine the
orientation of three points in the plane.

As in [28] and [30], we follow Knuth’s approach to handle orientation in the
plane. We first specify the orientation predicate with its properties and then
implement it when the plane is represented by R

2.

4.1. Specification

The predicate ccw(p, q, r) expresses whether the points p, q, r are enumerated
clockwise or not. Fig. 3 exemplifies this orientation predicate ccw for such a triple
of points. The example on the left (a) denotes a case where the triple (p, q, r) is
oriented counter-clockwise. The one in the middle (b) denotes a case where the
three points are collinear. Finally, the one on the right (c) denotes a case where
the triple (p, q, r) is oriented clockwise.

In fact, Knuth chooses not to handle degenerate cases. He assumes that three
points are always in general position, i.e. no two of them coincide and they do
not all lie on the same line. In our work, we assume the same, therefore the case
(b) of Fig. 3 can not happen.

Figure 3: The orientation predicate

The orientation predicate is specified as follows:

Property 1 (Geometric orientation predicate).
P.1 (cyclicity): ∀p, q, r, ccw(p, q, r) ⇒ ccw(q, r, p).
P.2 (symmetry): ∀p, q, r, ccw(p, q, r) ⇒ ¬ccw(p, r, q).
P.3 (non-degeneracy): ∀p, q, r,¬collinear(p, q, r) ⇒ ccw(p, q, r) ∨ ccw(p, r, q).
P.4 (interiory): ∀p, q, r, t, ccw(t, q, r) ∧ ccw(p, t, r) ∧ ccw(p, q, t) ⇒ ccw(p, q, r).

12

P.5 (transitivity): ∀p, q, r, s, t, ccw(t, s, p)∧ccw(t, s, q)∧ccw(t, s, r)∧ccw(t, p, q)∧
ccw(t, q, r) ⇒ ccw(t, p, r).
P.5 bis (dual transitivity): ∀p, q, r, s, t, ccw(s, t, p)∧ ccw(s, t, q)∧ ccw(s, t, r)∧
ccw(t, p, q) ∧ ccw(t, q, r) ⇒ ccw(t, p, r).

Note that even if the collinearity case does not happen, a complete axiomatization
requires to have an additional predicate collinear which expresses that three
points lie on the same line. Properties 1, 2, and 3 are immediate to understand.
Properties 4, 5, and 5 bis are illustrated in Fig. 4. Dotted lines correspond to
premisses and solid lines to conclusions of these properties.

Figure 4: Properties 4, 5 and 5 bis of Knuth’s orientation predicate ccw

All these properties are required not only to design an algorithm which works
fine and without bugs for any configuration of points in general position, but
also to carry out its proof of correctness. We shall use this specification of the
orientation predicate as an interface in our implementation of the convex hull
algorithm. However, to make sure it is consistent, we do also prove all the above
mentionned properties hold in our setting.

4.2. Implementing Knuth’s orientation predicate for R
2

Our implementation uses the following concrete definition of ccw.

Definition 4 (Orientation of a triple of points).
Let (p, q, r) be a triple of points in the plane whose coordinates in R are (xp, yp),
(xq, yq) et (xr, yr). The orientation predicate is defined according to the sign of
the determinant det(p, q, r).

det(p, q, r) =

∣

∣

∣

∣

∣

∣

xp yp 1
xq yq 1
xr yr 1

∣

∣

∣

∣

∣

∣

This means, if det(p, q, r) > 0, ccw(p, q, r) holds (and p, q, r are enumerated
counter-clockwise), whereas, if det(p, q, r) ≤ 0, ccw(p, q, r) does not hold (and
p, q, r are enumerated clockwise or are collinear).

13

Real numbers are described in Coq using an axiom system [33]. Basic oper-
ations (+, -, × , /) are specified and their more advanced properties are derived
from this abstract specification. Thus, the function det can be easily imple-
mented as follows:

Definition det (p q r : point) : R :=

(fst p * snd q) - (fst q * snd p) - (fst p * snd r) +

(fst r * snd p) + (fst q * snd r) - (fst r * snd q).

From this definition, we derived the orientation predicate ccw:

Definition ccw (p q r : point) : Prop := (det p q r > 0).

From this definition and properties of real numbers, we formally prove in Coq
that all the properties of the specification hold. In addition, the orientation prop-
erty is decidable, meaning it can be used in conditional expressions of algorithms.
The theorem ccw dec expresses this decidability property and is formally proved
in Coq.

Lemma ccw_dec : forall (p q r : point), {ccw p q r}+{~ccw p q r}.

We now have a framework to handle the orientation predicate in a formal
way. No issue related to numerical computations shall be considered in the rest
of this article. We shall only consider we have a decidable predicate ccw available,
which satisfies the above-mentionned specification and can be used to determine
the orientation of a triple of points in the plane.

5. Convex hull and incremental algorithm

In this section, we introduce the convex hull concept and we describe the
incremental convex hull algorithm whose formal correctness shall be proved.

5.1. Convex hull definition

The computation of planar convex hulls in one of the first problems that was
studied in computational geometry. Many definitions leading to different algo-
rithms were proposed in the literature [4, 8, 14, 31]. In this work, we choose
a definition well-suited for our topological hypermap model, for using Knuth’s
orientation predicate ccw and for the incremental algorithm we will study.

Let P be a set of points in the plane. Like most of the authors, we assume
that points are in general position, i.e. no two points coincide and no three ones

are collinear.

14

Definition 5 (Convex hull).
The convex hull of S is the convex polygon P whose vertices ti, numbered in a
counterclockwise order traversal for i = 1, . . . , n with n + 1 = 1, are points of S
such that, for each edge [titi+1] of P and for each point p of S different from ti
and from ti+1, ccw(ti,ti+1,p) holds. In other words, every point p of S different
from ti and ti+1 lies on the left of the oriented line generated

−−−→
titi+1.

Figure 5: Characterizing a convex hull

Fig. 5 shows a characterization of a convex hull using predicate ccw. Left (a),
we have a finite set P of points. In the middle (b), we have a convex polygon
T with its greyed interior (which shall be formally defined later in the article).
Right (c), arrows denote oriented lines

−−−→
titi+1 derived from edges [titi+1] of T . All

featured points p, p′, . . . do lie on the left of these oriented lines.

5.2. Incremental algorithm

The incremental algorithm computes the convex hull of P by building it step
by step. At each step, a new point of P is considered and a new convex hull is
computed. It takes as input the current hull (the one built with all the already-
processed points). Then, either the new point lies inside the already-built polygon
and the algorithm moves on to the next step, or it lies outside of the polygon
and the algorithm will have to remove some edges and add two new ones to build
a new convex polygon. This corresponds to the usual naive algorithm which is
found in most books of computational geometry (e.g. in [8]). Since we assume
that points are in general position, the new point can never be on the already-
built polygon, i.e. be equal to a previously-added point or lie on an existing edge.

The incremental algorithm can be decomposed into three functions named
CH, CHI and CHID in the code.

15

• The first function CH initiates the incremental computation of the convex hull.
For a single point, the convex hull is the point itself. For more than one point,
the algorithm starts with an initial set containing only two points and computes a
first convex hull which is simply an edge linking the two points. Then it calls the
function CHI with this first convex hull and the remaining points to be treated.
• The second function, CHI, takes every element s of the initial set P and calls the
insertion function CHID to build a new convex hull. It proceeds by case analysis.
Then, for each new point s in P , it extends the already-built convex polygon
using the insertion operation CHID.
• The last one, CHID, computes the convex hull of a convex polygon T and an
extra point s, i.e. it inserts s into the already-built convex hull polygon T . It
uses tests based on Knuth’s orientation predicate ccw. According to Definition
5, we know that the interior of polygon T is defined by the points x of the plane
such that ccw(ti, ti+1, x) for any edge [titi+1] of T .

In addition, the line generated by
−−−→
titi+1 divides the plane remainder into two

open half planes characterized by the value of ccw(ti, ti+1, x) for every point x.
Therefore, one can easily locate the point s with respect to each edge [titi+1] of
the polygon T . We simply have to evaluate ccw(ti, ti+1, s). Repeating this test
for all i = 1, . . . , n, this tells us whether s lies inside or outside T .

If s lies inside T , the convex hull of (T ∪ s) is the same as the one of T .
Otherwise, s necessarily lies outside T , the algorithm removes edges of T which
are visible from s and creates two new edges [tls] and [str] to connect s to the
leftmost vertex tl and to the rightmost vertex tr. All these notions are defined
precisely in the following definitions and illustrated in Fig. 6.

Definition 6 (Visible edges, leftmost vertex, rightmost vertex).
Let T be a planar convex polygon with at least two vertices and s be a point of
the plane.
(1) The edge [titi+1] of T is visible from s whenever ¬ ccw(ti, ti+1, s) holds.
(2) The vertex tl of T is the leftmost vertex with respect to s if ccw(tl−1, tl, s)
and ¬ ccw(tl, tl+1, s) hold.
(3) The vertex tr of T is the rightmost vertex with respect to s if ¬ ccw(tr−1, tr, s)
and ccw(tr, tr+1, s) hold.

Note that we shall have to prove the equivalence of the existence of tl and tr
later in this article. Indeed, when s is inside the polygon, tl and tr do not exist.
Otherwise, when s is outside, both of them exist. No other cases shall be consider
as s can not be collinear with two of the vertices of the convex polygon. In addi-
tion, we shall prove the uniqueness of these two vertices tl and tr when they exist.

This algorithm shall be formalized according to our data structures, namely
hypermaps.

16

Figure 6: Computing a new convex hull from a convex polygon T and a new point s

6. Designing the incremental algorithm in Coq

6.1. Data representation

The initial set of points of the plane from which the convex hull is computed is
represented as an object of type fmap which is constrained to be a combinatorial
oriented map where each point is represented by an isolated linkless dart whose
embedding is the point coordinates (see Fig. 7 (a)).

The final convex hull is a polygon represented as an object of type fmap which
is constrained in order to be a combinatorial oriented map. Each polygon vertex
is represented by a topologic vertex (two distinct darts with the same embedding
linked at dimension one) and each edge is represented by a topologic edge (two
distinct darts with different embedding linked at dimension zero). This is illus-
trated in Fig. 7 (b).

We shall see that all intermediate computations are also represented by com-
binatorial oriented maps possibly with isolated darts. Therefore, in the remainder
of the paper, we shall only consider a subtype of objects of type fmap which are
actually combinatorial oriented maps.

As the incremental computation of the convex hull relies on orientation tests
in the plane, one must direct the polygon counter-clockwise. This is achieved
by always linking darts in the same direction, links being represented by small
arrows in the drawings. Furthermore, darts representing points which are inside
the convex hull are kept in the final map where they are isolated non-linked darts
(see Fig. 7 (b)). These darts can be erased if required.

17

Figure 7: Representation of the input and output of the algorithm as maps of type fmap

6.2. Precondition

In the formalization, it is necessary to make the precondition the input map
m must satisfy before the application of CH more precise. This precondition has
four predicates and it is defined as follows:

Definition prec_CH (m:fmap) : Prop :=

inv_hmap m /\ linkless m /\ well_emb m /\ noncollinear m.

The hypermap m of course has to verify the hypermap invariant inv hmap

which is explained in Section 3.2.3. It must have no link at all between darts
(no L constructor), which is the property the predicate linkless expresses. The
predicate well emb expresses that the geometric embedding must be sound, i.e. all
input darts must have different embeddings. The well emb predicate captures
this property although it also ensures some additional technical properties when
links occur (see Section 9.2). In this first experiment, we assume no three darts
having different embeddings can be embedded into three collinear points. For a
map, the corresponding predicate noncollinear is specified as follows:

Definition noncollinear (m:fmap) : Prop :=

forall (d1 d2 d3 : dart),

let p1 := (fpoint m d1) in let p2 := (fpoint m d2) in

let p3 := (fpoint m d3) in exd m d1 -> exd m d2 -> exd m d3 ->

p1 <> p2 -> p1 <> p3 -> p2 <> p3 -> ~ collinear p1 p2 p3.

In the above definition, fpoint m d is the point onto which the dart d is
embedded in the map m.

18

6.3. Classifying the darts

Following our implementation decisions to design the incremental algorithm,
it appears one can classify darts into three different kinds. To make the char-
acterization more visual, we choose to do it using three different colors (blue,
red and black) depending on the links the darts are involved in. Black darts

are isolated darts with no links at all. Blue darts are those with exactly one
predecessor at dimension one and exactly one successor at dimension zero. Red

darts are those with exactly one predecessor at dimension zero and exacly one
successor at dimension one. Note that the meaning of these colors is completely
different from those used in [30]. We remind the reader that in our definition of
hypermaps in Coq, a given dart can not have more than one successor and one
predecessor at each dimension. Our classification of darts is presented in Fig. 8
(which is also readable in black and white).

Figure 8: The three kinds of darts and their role in our description of the convex hull

In Coq, predicates black dart, blue dart and red dart respectively express
that a dart x is black, blue or red in a given map m:

Definition black_dart (m:fmap)(d:dart) : Prop :=

~ succ m zero d /\ ~ succ m one d /\

~ pred m zero d /\ ~ pred m one d.

Definition blue_dart (m:fmap)(d:dart) : Prop :=

succ m zero d /\ ~ succ m one d /\

~ pred m zero d /\ pred m one d.

Definition red_dart (m:fmap)(d:dart) : Prop :=

~ succ m zero d /\ succ m one d /\

pred m zero d /\ ~ pred m one d.

19

The three dart kinds appear in our description of the convex hull: black darts

are drawn as full lines, blue darts as dashed lines and red darts as dotted lines
(see Fig. 8 (b)). Their decidability is proved by the functions black dart dec,
blue dart dec, red dart dec which can be used for branching in the code de-
pending on the dart color.

6.4. Postconditions

We summarize the main properties we expect from our convex hull computa-
tion. Overall several topologic properties are required as well as the fundamental
property that the built polygon is actually convex.

As far as geometric properties are concerned, we expect that the free map
returned by the function CH actually verifies the convex property (see Definition
5). It relies on Knuth’s orientation predicate ccw and can be transcripted into
Coq using darts as follows:

Definition convex (m:fmap) : Prop := forall (x:dart)(y:dart),

exd m x -> exd m y -> blue_dart m x ->

let px := (fpoint m x) in let py := (fpoint m y) in

let x0 := (A m zero x) in let px0 := (fpoint m x0) in

px <> py -> px0 <> py -> ccw px px0 py.

6.5. Visible, leftmost and rightmost darts

We emphasized in Section 5.2 the role of the visibility of an edge from a point
as well as the role of the leftmost and rightmost visible vertices. As we work
with darts, the visibility of an edge is expressed on any one of its darts, and the
leftmost and rightmost vertices are replaced by two darts, the actual leftmost one
and the actual rightmost one (see Fig. 10 for a graphical description).

First, we define the predicates visible and invisible using the classification
of darts and Knuth’s orientation predicate ccw. The predicate invisible is
exactly the negation of visible:

Definition visible (m:fmap)(d:dart)(p:point) : Prop :=

if (blue_dart_dec m d)

then (ccw (fpoint m d) p (fpoint m (A m zero d)))

else (ccw (fpoint m (A_1 m zero d)) p (fpoint m d)).

As usual, decidability properties visible dec and invisible dec are proved.
Then, following Definition 6, we specify two predicates left dart and right dart

which state that a dart is the leftmost or the rightmost dart of m with respect to
a point p:

20

Definition left_dart (m:fmap)(p:point)(d:dart) : Prop :=

blue_dart m d /\ invisible m (A_1 m one d) p /\ visible m d p.

Definition right_dart (m:fmap)(p:point)(d:dart) : Prop :=

red_dart m d /\ visible m d p /\ invisible m (A m one d) p.

These predicates decidability is proved by the two lemmas left dart dec

and right dart dec. Note that, by convention, the leftmost dart always is a
blue one and the rightmost dart is a red one. In addition, we shall have to prove
the equivalence of the existence and the uniqueness of these two vertices. We will
go back to these crucial questions in Section 9.1.

6.6. Programming the incremental algorithm with Coq

In this section, we write in Coq our incremental algorithm by structural re-
cursion on free maps.

• We first define the main function CH which computes the whole convex hull of
a finite set of points in the plane represented by a map m. If the initial map m

is empty, it returns the empty map V. If m has only one dart, it returns a map
with only one isolated dart. If it has at least two darts, it proceeds as follows:
the function CH builds a first convex polygon for two of the involved darts using
CH2 (Fig. 9) and then calls the recursive function CHI. Since CH input is reduced
to a dart set, no other case must be considered.

Definition CH (m:fmap) : fmap :=

match m with

V => V

| I V x p => I V x p

| I (I m0 x1 t1 p1) x2 t2 p2 =>

CHI m0 (CH2 x1 p1 x2 p2 (max_dart m)) ((max_dart m)+3)

| _ => V

end.

Note that max dart m returns the largest dart (in fact, darts are integers) of
the map m. As we will see, this function helps to simulate the generation of new

darts, i.e. darts which do not appear in m. Note that CH2 uses two new darts (see
above). Therefore the call to CHI, which also needs a new dart, is done with the
parameter (max dart m)+3.

• Given two distinct darts x1 and x2, the function CH2 builds the combinatorial
oriented map shown in Fig. 9. To do that, it introduces two new darts, namely,
max+1 and max+2, and links them conveniently with x1 and x2. Instead of having

21

a simple edge as presented in Section 5.2, we actually have a flattened polygon
(in Fig. 9, edges are curved for visibility reasons) consisting in four darts and
their links. This allows us to handle the case of two points in the same way as
the general one.

Figure 9: A convex hull of two darts built by the CH2 function

Definition CH2 (x1:dart)(p1:point)

(x2:dart)(p2:point)(max:dart) : fmap :=

let m0 := (I (I V x1 p1) x2 p2) in

let m1 := L (I m0 (max+1) p1) one (max+1) x1 in

let m2 := L (I m1 (max+2) p2) one (max+2) x2 in

L (L m2 zero x1 (max+2)) zero x2 (max+1).

• Finally, function CHI takes the darts of m one-by-one and builds for each one
a new convex hull using CHID and the parameter max. Then the recursive call of
CHI is with parameter max+1.

Fixpoint CHI (m1:fmap)(m2:fmap)(max:dart) {struct m1} : fmap :=

match m1 with

V => m2

| I m0 x p => CHI m0 (CHID m2 m2 x p max) (max+1)

| _ => V

end.

Now, we describe our function CHID.

6.7. A step of convex hull building

As already hinted in the previous section, function CHID computes the convex
hull of a convex polygon represented by a map m (of type fmap) and a new point
represented by a dart x. It works by structural recursion on m by studying each
dart and each link separately. Darts are processed in random order (one dictated
by the structure of the fmap term) while reconstructing the polygon (instead of
traversing them in the sequential order dictated by the counter-clockwise traver-
sal of the polygon). Because m is modified at each recursive call, CHID keeps a
reference map mr, which is the same as m when CHID is first called. This refer-
ence map is useful to perform tests and will never be modified during the whole
execution of the function. At each step of the computation, m is a submap of
the reference map mr according to the following definition:

22

Figure 10: CHID behavior

Fixpoint submap (m:fmap)(mr:fmap) {struct m} : Prop :=

match m with

V => True

| I m0 x p => submap m0 mr /\ exd mr x /\ (fpoint mr x) = p

| L m0 k x y => submap m0 mr /\

(A mr k x) = y /\ (A_1 mr k y) = x

end.

Initially, m is equal to mr and at each recursive call, we formally prove in
Coq the property submap m mr still holds.

As previously said, there are two cases in CHID. If the new point lies inside

the convex polygon, the function CHID simply inserts the dart x into the map m

without any links. If it lies outside the convex polygon, the function CHID removes
the edges of the polygon which are visible from the new point and creates two
new ones connecting it with the leftmost vertex and the rightmost vertex of the
polygon.

In fact, CHID works constructively and not destructively: it always rebuilds
from scratch the hypermap result by adding darts and their new links. If a link
does not have to be reintegrated, it is quite simply forgotten. In this context, a
recursive call to (CHID m mr x p max) unfolds as follows (see Fig. 11). Let us
explain this in details:

• If m is the empty map (line 04), CHID simply returns the dart x with no links.

• If m matches (I m0 x0 p0) (line 05), CHID checks the dart kind of x0 in mr.
- If x0 is a blue dart in mr (line 06), the program tests whether x0 belongs to
an edge of mr which is invisible from the new dart x embedded into point p (line
07). This test is achieved using the predicate invisible dec. If the edge of x0

is invisible from p (line 08), the dart is simply kept in the map. Otherwise, the
23

01: Fixpoint CHID (m:fmap)(mr:fmap)(x:dart)(p:point)

02: (max:dart) {struct m} : fmap :=

03: match m with
04: V => I V x p

05: | I m0 x0 p0 =>

06: if (blue_dart_dec mr x0) then
07: if (invisible_dec mr x0 p) then
08: (I (CHID m0 mr x p max) x0 p0)

09: else if (left_dart_dec mr p x0) then
10: (L (L (I (I (CHID m0 mr x p max) x0 p0)

11: max p) one max x) zero x0 max)

12: else (I (CHID m0 mr x p max) x0 p0)

13: else if (red_dart_dec mr x0) then
14: if (invisible_dec mr x0 p) then
15: (I (CHID m0 mr x p max) x0 p0)

16: else if (right_dart_dec mr p x0) then
17: (L (I (CHID m0 mr x p max) x0 p0) zero x x0)

18: else (CHID m0 mr x p max)

19: else (I (CHID m0 mr x p max) x0 p0)

20: | L m0 zero x0 y0 =>

21: if (invisible_dec mr x0 p) then
22: (L (CHID m0 mr x p max) zero x0 y0)

23: else (CHID m0 mr x p max)

24: | L m0 one x0 y0 =>

25: if (invisible_dec mr x0 p) then
26: (L (CHID m0 mr x p max) one x0 y0)

27: else if (invisible_dec mr y0 p) then
28: (L (CHID m0 mr x p max) one x0 y0)

29: else (CHID m0 mr x p max)

30: end.

Figure 11: CHID function in Coq

program tests (line 09) whether x0 is the new leftmost dart of mr with respect to
x. If x0 is the leftmost dart (line 10), it remains in the map. In addition, a new
dart max (embedded into p) is inserted and linked to x at dimension one. Finally
x0 and max are linked at dimension zero. Otherwise, x0 is simply kept in the
map (line 12).
- If x0 is a red dart in mr, a similar reasoning step is performed (lines 13-18).
- If x0 is a black dart in mr, it is kept in the map (line 19).

24

• If m matches (L m0 zero x0 y0) (line 20), CHID tests whether the edge formed
by x0 and y0 is invisible from x embedded into p (line 21). If it is invisible from
p, the link at dimension zero between x0 and y0 is kept (line 22). Otherwise, it
is not added again in the result map (line 23).

• Similar steps apply if m matches (L m0 one x0 y0) (lines 24-29).

7. Extracting our Coq program into OCaml

The Coq proof assistant features an extraction mechanism which automati-
cally generates certified programs in OCaml or Haskell from proofs and specifica-
tions developped in Coq. It uses the Curry-Howard isomorphism between func-
tional programming and natural deduction. This paradigm states that: “proof
= program” and “proposition = type”.

Figure 12: Graphical interface

We use this feature to extract an OCaml program which computes convex
hulls from our specification of Fig. 11. Coq datatypes such as fmap are automat-
ically extracted into standard OCaml datatypes. However, some basic definitions
or axioms can be manually translated into OCaml terms when the extraction

25

mechanism does not know how to translate them. We reproduce all the manual
translation commands required below.

Extract Inductive sumbool => "bool" ["true" "false"].

Extract Constant R => "float".

Extract Constant R0 => "0.0".

Extract Constant R1 => "1.0".

Extract Constant Rplus => "fun x y -> x+.y".

Extract Constant Rmult => "fun x y -> x*.y".

Extract Constant Ropp => "fun x -> -.x".

Extract Constant total_order_T => "fun x y ->

if (x<y) then (Inleft true) else

if (x=y) then (Inleft false) else (Inright)".

We choose to map Coq real numbers into Ocaml floating-point numbers to
be able to quickly extract our Coq implementation into a prototype program in
Ocaml. However, we must underline that such a translation (which actually is
an approximation) is unsound. Indeed, among other issues, adding floating-point
numbers in Ocaml is not an associative operation. In addition, such a translation
may lead to errors in the evaluation of the geometric predicates as underlined in
[24]. A more sensible extraction we would use in the event we want to insert this
proved-correct program into a modeler would be to consider rational numbers in
Coq rather than real numbers. This shall be sufficient for our purposes and the
extraction of rational numbers from their implementation in Coq into the one in
Ocaml will be straightforward and more importantly, it would be safe.

The extracted program only contains the code of functions CH, CHI, CH2,
and CHID which computes the convex hull. One then has to create a graphical
interface in order to be able to select points of the plane, transform this input
into a map, let the extracted function CH compute the convex hull and transform
the resulting map into a polygonal line (together with some remaining isolated
points inside) which can be displayed on the screen. For convenience, translation
functions from lists of points to maps (list to fmap) and from Peano’s integers
to binary integers and vice-versa (i2n and n2i) are also provided:

let rec list_to_fmap l i : fmap =

match l with

| [] -> V

| (x,y) :: l0 -> (I ((list_to_fmap l0 (i+1)),

(i2n i), (Pair (float_of_int x, float_of_int y))));;

let rec i2n = function 0 -> O | n -> S (i2n (n-1));;

let rec n2i = function O -> 0 | S p -> 1+(n2i p);;
26

Fig. 12 presents a snapshot of the graphical interface. All links are symbolized
with small circles, with a small dot inside for vertices and nothing for edges.

From our algorithm written in Coq, we manage to automatically derive a pro-
gram which can actually run on a computer. The next step is to make sure the
algorithm is correct, i.e. it really computes convex hulls. This consists in prov-
ing several topologic and geometric properties. Several consistency properties
(e.g. free maps at stake are meaningful ones all the way) are required. We shall
also prove that the output verifies the definition of convex hull given in Section
5.1.

8. Topologic properties

Initially, we decided to prove topologic properties first, and then focus on
geometric ones. However, for some of the topologic properties, geometric prop-
erties inevitably interfere. We can not reason on topologic issues without taking
into account some basic geometric facts. This section focuses on proofs of topo-
logic properties, even though they do sometimes rely on geometric properties.
Relevant topologic properties are the hypermap property invariant preservation,
the property that the hypermap describing the convex hull (at some stage of the
computation) is always a polygon, the preservation of the initial darts in the
computed convex hull and the planarity property for the convex hull computed
by the algorithm.

8.1. Dart kinds and their evolution throughout the algorithm

As presented in Section 6.3, it is possible to classify darts handled by our
algorithm into three kinds (blue, red, or black). As it proceeds by structural
induction on a map, the insertion function CHID considers darts one after another
in random order. In addition, links are not studied at the same time as the darts
they do link. Consequently, during recursive calls, not only some darts can shift
from one kind to another but also darts may not belong to any kind anymore
(e.g. when a dart loses only one of its links). They do end up in intermediate

states during the execution of the insertion function CHID.
For example, blue darts can either lose their incoming link at dimension zero,

or their outgoing link at dimension one. If both links are removed, then they
actually become black darts.

To make proofs easier, especially in the proof of planarity (see Section 8.5),
we define four intermediate kinds darts can belong to: namely half blue succ

for a half blue dart with only a successor (at dimension one), half blue pred for
a half blue dart with only a predecessor (at dimension zero):

27

Definition half_blue_succ (m:fmap)(d:dart) : Prop :=

succ m zero d /\ ~ succ m one d /\

~ pred m zero d /\ ~ pred m one d.

Definition half_blue_pred (m:fmap)(d:dart) : Prop :=

~ succ m zero d /\ ~ succ m one d /\

~ pred m zero d /\ pred m one d.

Figure 13: Possible changes of kinds for blue darts while CHID is executed

We can immediately transpose these definitions for red darts. These new
kinds, representing intermediate states and possible changes of kinds for blue
and half blue darts, are presented in Fig. 13. It works exactly the same for red

darts as well. All these changes happening to the input combinatorial oriented
map explain why we must have a reference map: the initial one, right before the
first call to the insertion function (see Section 6.7 for details) to test the existence
of darts and links between darts.

To consider all possible cases which can happen during recursive calls to this
function, we establish 78 lemmas which express these changes in dart kinds. Here
are two examples of such lemmas:

• The first lemma blue dart CHID 1 expresses that, if a dart d is blue in the
reference map mr and belongs to the current map m, then it remains in the result
map (CHID m mr x tx px max):

Lemma blue_dart_CHID_1 :

forall (m mr:fmap)(x:dart)(px:point)(max:dart)(d:dart),
28

blue_dart mr d -> exd m d -> exd (CHID m mr x px max) d.

• The second lemma blue dart CHID 11 expresses that, if a dart d, different from
the new dart x, is blue in the reference map mr, belongs to the current map m, and
is visible from the point to be inserted px but that its predecessor at dimension
one is not visible, then its successor at dimension zero in the map (CHID m mr

x tx px max) is a new dart max:

Lemma blue_dart_CHID_11 :

forall (m mr:fmap)(x:dart)(px:point)(max:dart)(d:dart),

submap m mr -> d <> x -> exd m d -> blue_dart mr d ->

visible mr d px -> invisible mr (A_1 mr one d) px ->

A (CHID m mr x px max) zero d = max.

8.2. Hypermap invariant preservation

The first important theorem we want to prove is that the invariant inv hmap

holds all the way from the initial map m to the final one (CH m). This predicate
inv hmap states that darts must belong to the map before being linked together
and one dart can not be inserted twice in the same map (see Section 3.2.3).

Theorem inv_hmap_CH : forall (m:fmap),

prec_CH m -> inv_hmap (CH m).

The proof proceeds by induction of the free map m and relies both on the
lemmas of the previous section about the way darts may change kinds during
the execution of the algorithm, and on the technical proofs of uniqueness of the
leftmost and rightmost darts (see Section 9.1).

This illustrates that topologic properties do depend on geometric properties
in geometric algorithms such as computing convex hulls. Indeed, the key property
to establish the above-mentionned theorem is that whether a dart d is kept in the
current combinatorial oriented map (topologic property) simply relies on whether
it is visible or not with respect to the point being inserted into the convex hull
(geometric property).

8.3. The convex hull is a topologic polygonal set

The predicate inv poly on free maps expresses what a topologic polygonal set

is. Informally, it consists of a set of polygons and isolated darts. In our algorithm,
we expect to actually obtain a polygon together with some isolated darts. In a
map verifying inv poly, all darts are either black, blue, or red darts. No dart
is partially linked. Therefore, for each dart d in the map, it either is black and
isolated with no links or it is blue or red, meaning it belongs to the connected
component which forms what we expect to be the convex hull.

29

Definition inv_poly (m:fmap) : Prop := forall (d:dart),

exd m d -> black_dart m d \/ blue_dart m d \/ red_dart m d.

We prove that the free map returned by the function CH verifies the invariant
inv poly and therefore that it is a topologic polygonal set.

Theorem inv_poly_CH : forall (m:fmap),

prec_CH m -> inv_poly (CH m).

The proof proceeds the same way as in the proof of the property inv hmap

but also uses the equivalence of the existence of the leftmost and rightmost darts
(see Section 9.1).

8.4. Initial darts preservation

Another fundamental property to prove is that darts which belong to the
initial map do belong to the final map (denoting the convex hull) with their
embeddings.

Theorem exd_CH : forall (m:fmap)(d:dart), prec_CH m ->

exd m d -> exd (CH m) d /\ fpoint m d = fpoint (CH m) d.

In addition, only new (red) darts which are inserted during the convex hull
computation can be removed from the map representing the final convex hull.
According to CHID behavior, we note that darts extracted from the initial map
and inserted into the convex hull are either black if they do lie inside the already-
built convex hull, or blue if they do lie outside. Conversely, all black and blue

darts of the resulting map are in the initial map. In addition, all red darts are
new darts created using function max dart (see Section 6.6). Then, to prove the
initial darts are still present in the resulting map, it simply remains to be proved
that black and blue darts are kept in the resulting map each time a new dart is
inserted.

8.5. Planarity

So far, we proved that our algorithm eventually produces a polygon and some
isolated darts. We must still formally verify that this resulting polygon is actually
planar. The planarity property planar is defined as follows [12, 13]:

Definition planar (m:fmap) := genus m = 0.

We prove that, if m verifies the preconditions presented in Section 6.2, then
the result of the incremental computation of the convex hull (CH m) is planar.

30

Theorem planar_CH : forall (m:fmap),

prec_CH m -> planar (CH m).

This proof uses the planarity criteria established in [12, 13] as well as the
classification of the darts. One of the planarity characterizing lemmas is presented
below:

Lemma planarity_crit_0 : forall (m:fmap)(x:dart)(y:dart),

inv_hmap m -> prec_L m zero x y -> (planar (L m zero x y) <->

(planar m /\ (~ eqc m x y \/ expf m (cA_1 m one x) y))).

The predicate eqc (resp. expf), proposed in [12], respectively express that
two darts belong to the same connected component (resp. to the same face).

This lemma characterizes what is required for a free map m in which we link x
to y at dimension zero to be planar. Such a free map will be planar if and only
if the map m is planar and either x and y do not belong to the same connected
components, or there exists a path in a face from the image of x by the closure
function cA 1 at dimension one to y. This characterization obviously requires
some preconditions, namely that m verifies the inv hmap property and that x
and y verify the precondition for 0-linking two darts together (prec L).

8.6. Connected components and face numbering

The last two topological properties we need to establish are that the number
of connected components is equal to 1 and that the number of faces in the map
returned by CH is equal to 2 (plus the number of isolated darts). Note this only
holds when the initial map contains at least two darts. These two properties are
stated using functions nc and nf computing the number of connected components
and the number of faces of a map (see [12] for details). These two properties are
shown to be equivalent to one another. However completing the proofs of these
properties would be very tedious in Coq and is not done in this work.

Conjecture nc_1 : forall (m:fmap), prec_CH (m) ->

nd (m) >= 2 -> nc (CH m) = 1 + nn (CH m).

This first property states that, as soon as the number of darts in a free map
m is greater or equal to 2, the number of connected components in the computed
convex hull (CH m) is equal to 1 plus the number of isolated darts (black darts
which lie inside the convex hull). The proof would proceed by induction on the
structure of the free maps and would lead to numerous and intricate cases to
handle.

Conjecture nf_2 : forall (m:fmap), prec_CH (m) ->

nd (m) >= 3 -> nf (CH m) = 2 + nn (CH m).
31

The second property states that, as soon as the number of darts in a free
map m is greater or equal to 3, the number of faces in the computed convex hull
(CH m) is equal to 2 (inside and outside) plus the number of isolated darts (black
darts which lie inside the convex hull).

As said before, these two properties are equivalent thanks to Euler Formula.
However neither of these two properties, nor the equivalence were formally proved
in Coq. Indeed, such proofs are doable but very tedious. There are no theorit-
ical issues involved but we would have to handle an exponential increase in the
amount of cases to prove. The main difficulty is to do numbering of darts, ver-
tices, edges, faces and connected components during the computations of the
insertion function CHID. This would require to use the inductive definitions of the
predicates expf and eqc at several levels in patterns of CHID like (L (L (I (I

(CHID m0 mr x t p max) x0 p0).

We now focus on the geometric properties required to prove that our algorithm
actually computes a convex hull.

9. Geometric properties

Key geometric properties are that darts are embedded in a consistent way in
the plane and that the computed free map is actually a convex hull.

9.1. Uniqueness and equivalence of existence of the leftmost and rightmost ver-

tices

The first properties we establish are technical ones dealing with the unique-
ness and the equivalence of the existence of two darts: the leftmost one and the
rightmost one.

• To prove the uniqueness, one assumes there are two leftmost darts and then
proves that they are equal. We use the convexity properties as well as visibility
ones for both darts. This leads to six triples of darts whose orientation contradict
either the property 5 or 5 bis of Knuth. The theorem for the leftmost dart is the
following one:

Theorem one_left : forall (m:fmap)(p:point)(x:dart)(y:dart),

inv_hmap m -> inv_poly m -> well_emb m ->

inv_noncollinear_points m p -> convex m ->

left_dart m p x -> left_dart m p y -> x = y.

A similar theorem is proved for the rightmost dart.

32

• The proof of the equivalence of the existence of the leftmost dart and the right-
most dart are expressed by the theorem exd left right dart (and its reciprocal)
which states that if a leftmost dart exists in m, then there also exists a rightmost
dart in m. Note that both darts may not exist (when the considered dart lies
inside the already constructed convex hull). Therefore, the strongest property we
can show is that whenever one of the these two darts exist, then the other exists
as well.

Theorem exd_left_dart_exd_right_dart :

forall (m:fmap)(px:point), inv_hmap m -> inv_poly m ->

(exists da:dart, exd m da /\ left_dart m px da) ->

(exists db:dart, exd m db /\ right_dart m px db).

The proof proceeds by iteration on the darts belonging to the face. It relies
on the property that the face is bounded, i.e. its number of darts is finite and can
be computed which was proved using noetherian induction in [12]. Concretely, it
means the number of iterations of cF on a dart d required to come back to dart d
again is known in advance. One of the most significant lemmas required to prove
the above-mentionned theorem is the following one:

Lemma blue_dart_not_right_dart_until_i_visible_i :

forall (m:fmap)(d:dart)(p:point)(i:nat), inv_hmap m ->

inv_poly m -> exd m d -> blue_dart m d -> visible m d p ->

let iter0 := (A m zero (Iter (cF m) j d)) in

(forall (j:nat), j <= i -> ~ right_dart m p iter0) ->

visible m (Iter (cF m) i d) p.

Figure 14: Face iteration from dart d: all traversed darts are visible from p

Note that the k-iterate of a function f from a dart d, fk(d) is written Iter f

k d in our framework. This lemma states that if there exists a blue dart visible
from the point p we want to insert, then as long as we move around the face

33

and do not find the rightmost dart, all traversed darts are visible from p. This
property is illustrated at Fig. 14.

9.2. Embedding

We prove that darts are well embedded with respect to their links. To do that,
we first define the property well emb which was already used in the precondition
of the function CH in Section 6.2. For each dart in the hypermap, its embedding
must be different from those of its successor and predecessor at dimension zero

but the same that those of its successor and predecessor at dimension one. In
addition, all other darts must have a different embedding:

Definition well_emb (m:fmap) : Prop :=

forall (x:dart), exd m x -> let px := (fpoint m x) in

let x0 := (A m zero x) in let px0 := (fpoint m x0) in

let x1 := (A m one x) in let px1 := (fpoint m x1) in

let x_0 := (A_1 m zero x) in let px_0 := (fpoint m x_0) in

let x_1 := (A_1 m one x) in let px_1 := (fpoint m x_1) in

(succ m zero x -> px <> px0) /\ (succ m one x -> px = px1) /\

(pred m zero x -> px <> px_0) /\ (pred m one x -> px = px_1) /\

(forall y:dart, exd m y -> let py := (fpoint m y) in

y <> x -> y <> x1 -> y <> x_1 -> px <> py).

This definition is illustrated in Fig. 15. On the left-hand side, we have a blue
dart x with its 0-successor x0 and its 1-predecessor x 1, and on the right-hand
side, a red dart x with its 1-successor x1 and its 0-predecessor x 0.

Figure 15: Correct embedding of the darts with respect to their links.

Then, we establish the theorem:

Theorem well_emb_CH : forall (m:fmap),

prec_CH (m) -> well_emb (CH m).

To prove it, we proceed as usual using our classification of darts (see Section
8.1) and prove the darts do keep their embeddings during recursive calls to the
insertion function CHID.

34

9.3. Convexity

Theorem convex CH states the fundamental geometric property of the convex
hull computation. It expresses that, provided the initial free map m verifies the
preconditions, the final free map (CH m) is actually convex. More precisely, the
final free map represents a polygon being the convex hull and some isolated darts
inside this convex hull as well:

Theorem convex_CH : forall (m:fmap),

prec_CH m -> convex (CH m).

The convex property was defined in Section 6.4. The proof of this theorem
proceeds using the invariant property well emb as well as properties of Knuth’s
orientation predicate.

10. Conclusion

This work is a first experiment to see how our ideas on designing and certi-
fying geometric algorithms work. The specification of a convex hull computation
algorithm constitutes some sort of benchmark to check whether our library on
hypermaps and geometric predicates is adequate with respect to our specification
and proof goals.

What we achieve is designing a functional algorithm and formally proving its
total correctness with the Coq proof system. The termination of the algorithm is
immediate because of its inductive construction. Properties justifying the partial
correctness are all proved with the exception of the uniqueness of the polygonal
convex hull, which remains complicated and shall be one of our next challenges.
Fig. 16 provides some key figures about the size of the development and makes a
distinction between the size of the specifications and the size of the proofs (the
ratio is almost 1 to 10). The basic library corresponds to the already existing
specifications and proofs presented in [12]. The amount of specifications and
proofs developped for this formal proof of correctness of the incremental convex
hull algorithm is summarized in the second column. The Coq files of the develop-
ment are available online [5]. We manage to extract and make usable an OCaml
program which, given a set of points in the plane, computes the convex hull (us-
ing the extracted code) and displays its result on the screen. This confirms the
functional algorithm we designed is close to an actual implementation.

A worthwhile extension would be to derive an efficient program in a procedu-
ral language, where hypermaps would be represented with a concrete datatype
such as linked lists, as in [3]. In the short term, this could be performed by hand,
as we did for our image segmentation algorithm in [10]. In the longer term, one

35

Basic library Convex Hull

Number of definitions 142 52

Number of lemmas/theorems 550 409

Number of lines of specifications 3013 1620

Number of lines of formal proofs 28646 17902

Figure 16: Key figures about the size of our Coq development

expects to automate this process and formally prove the correctness of the actual
program we use, as this was carried out in [2] for a square root computation algo-
rithm for arbitrarily large numbers. In both cases, such refinements of programs
should be studied by decomposing them into a sequence of elementary transfor-
mations.

A procedural implementation mimicking the strategy of our functional algo-
rithm on a linked list would be really close to the classical incremental algorithm
and as efficient as it, namely O(n2) in the worst case, n being the number of
points in the input. One may object that it is still far from the optimal complex-
ity which is O(n.log(n)), but any implementation of the incremental algorithm
has this drawback.

The next step in our work is to study a variant of our incremental algorithm in
Coq. In this variant, at each step when a new point is inserted, searching for the
leftmost and rightmost darts would be performed by a traversal of a single face
of the current polygon instead of studying darts in random order. The hypermap
update can be performed by generating two new darts, unlinking of a few darts
and relinking some others when the point we intend to add is outside the convex
hull. Consequently, we would be very close to the common implementation of a
convex hull incremental algorithm. In addition, all convex hull algorithms such as
Graham scan or Jarvis march could be revisited using our library on hypermaps
and their operations.

Switching to a three-dimensional setting with a polyhedral convex hull would
then be another challenge. This means handling general polyhedral surfaces and
at this stage, the use of hypermaps of dimension 2 is even more meaningful. Fi-
nally, other computational geometry algorithms must be investigated. Currently,
one of the authors studies triangulations and an algorithm to build Delaunay
diagrams.

Last but not least, even if our handling of geometric predicates using Knuth’s
orientation predicate is very convenient, we sooner or later must deal with numer-

36

ical accuracy. This becomes a key issue in computational geometry as advocated
in [24], which, for a large part, deals with an orientation predicate and an algo-
rithm to compute a convex hull incrementally. More specifically, some efficient
techniques to statically verify the validity of some numeric predicates in algo-
rithms are developed using interval arithmetics and the Gappa tool [29]. This
tool was successfully used in computational geometry for validating the orienta-
tion predicate. Our approach was relevant at the beginning of our investigations,
but results on exact and/or lazy arithmetics and their formalizations (e.g. [23])
should be integrated in our formal development.

References

[1] Y. Bertot, P. Castéran, Interactive Theorem Proving and Program Development,
Coq’Art : The Calculus of Inductive Constructions, Texts in Theoretical Computer Sci-
ence, An EATCS Series, Springer-Verlag, Berlin/Heidelberg, 2004, 469 pages.

[2] Y. Bertot, N. Magaud, P. Zimmermann, A Proof of GMP Square Root, Journal of Auto-
mated Reasoning 29 (3-4) (2002) 225–252, special Issue on Automating and Mechanising
Mathematics: In honour of N.G. de Bruijn. An earlier version is available as a INRIA
research report RR4475.

[3] Y. Bertrand, J.-F. Dufourd, Algebraic Specification of a 3D-modeler Based on Hypermaps,
CVGIP: Graphical Models and Image Processing 56 (1) (1994) 29–60.

[4] J.-D. Boissonnat, M. Yvinec, Algorithmic Geometry, Cambridge University Press, 1998,
544 pages. Translated by Hervé Brönnimann.

[5] C. Brun, J.-F. Dufourd, N. Magaud, Designing and proving correct a convex hull al-
gorithm with hypermaps in Coq : the formal development in Coq, available from
http://galapagos.gforge.inria.fr (2010).

[6] R. Cori, Un code pour les graphes planaires et ses applications, Astérisque 27, Société
mathématique de France, Paris, 1970.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms (Second
Edition), The MIT Press, 2001, 1202 pages.

[8] M. de Berg, O. Cheong, M. van Kreveld, M. Overmars, Computational Geometry, Algo-
rithms and Applications (Third Edition), Springer-Verlag, Berlin/Heidelberg, 2008, 386
pages.

[9] J.-F. Dufourd, A hypermap framework for computer-aided proofs in surface subdivisions -
Genus theorem and Euler formula, in: SAC’07: Proceedings of the 22nd ACM Symposium
on Applied Computing, ACM Press, New York, NY, USA, 2007, pp. 757–761.

[10] J.-F. Dufourd, Design and formal proof of a new optimal image segmentation program with
hypermaps, Pattern Recognition 40 (11) (2007) 2974–2993.

[11] J.-F. Dufourd, Discrete Jordan curve theorem: A proof formalized in Coq with hypermaps,
in: STACS’08: Proceedings of the 25th International Symposium on Theoretical Aspects
of Computer Science, 2008, pp. 253–264.

[12] J.-F. Dufourd, Polyhedra genus theorem and Euler formula: A hypermap-formalized intu-
itionistic proof, Theoretical Computer Science 403 (2-3) (2008) 133–159.

[13] J.-F. Dufourd, An Intuitionistic Proof of a Discrete Form of the Jordan Curve Theorem
Formalized in Coq with Combinatorial Hypermaps, Journal of Automated Reasoning 43 (1)
(2009) 19–51.

37

[14] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, New York, NY,
USA, 1987.

[15] J. Edmonds, A Combinatorial Representation for Polyhedral Surfaces, Notices American
Mathematical Society 7 (1960) .

[16] E. Flato, D. Halperin, I. Hanniel, O. Nechushtan, E. Ezra, The Design and Implementation
of Planar Maps in CGAL, in: WAE’99: Proceedings of the 3rd International Workshop on
Algorithm Engineering, vol. 1668 of Lecture Notes in Computer Science, Springer-Verlag,
London, UK, 1999, pp. 154–168.

[17] G. Gonthier, A Computer-Checked Proof of the Four Colour Theorem, Technical report,
Microsoft Research, Cambridge (2005).

[18] G. Gonthier, Formal Proof - The Four-Colour Theorem, Notices of the AMS 55 (11) (2008)
1382–1393.

[19] G. Gonthier, A. Mahboubi, A Small Scale Reflection Extension for the Coq system, Tech.
Rep. RR-6455, INRIA (2008).
URL http://hal.inria.fr/inria-00258384/

[20] L. J. Guibas, J. Stolfi, Primitives for the manipulation of general subdivisions and the
computation of Voronoi diagrams, in: STOC’83: Proceedings of the fifteenth annual ACM
symposium on Theory of computing, ACM, New York, NY, USA, 1983, pp. 221–234.

[21] G. Huet, G. Kahn, C. Paulin-Mohring, The Coq Proof Assistant - A Tutorial, INRIA,
France, 2007, version 8.1. http://coq.inria.fr/V8.1/files/doc/Tutorial.pdf.

[22] A. Jacques, Constellations et graphes topologiques, Combinatorial Theory and Applications
2 (1970) 657–673.

[23] N. Julien, Certified Exact Real Arithmetic Using Co-induction in Arbitrary Integer Base,
in: FLOPS, 2008, pp. 48–63.

[24] L. Kettner, K. Mehlhorn, S. Pion, S. Schirra, C. Yap, Classroom Examples of Robustness
Problems in Geometric Computations, Computational Geometry: Theory and Applications
(CGTA) 40 (1) (2008) 61–78.

[25] D. Knuth, Axioms and Hulls, vol. 606 of Lecture Notes in Computer Science, Springer-
Verlag, Berlin/Heidelberg, 1992, 109 pages.

[26] P. Lienhardt, Topological Models for Boundary Representation: a Comparison with n-
Dimensional Generalized Maps, Computer-Aided Design 23 (1) (1991) 59–82.

[27] M. Mantyla, R. Sulonen, GWB: A Solid Modeler with Euler Operators, IEEE Computer
Graphics and Applications 2 (7) (1982) 17–31.

[28] L. Meikle, J. Fleuriot, Mechanical Theorem Proving in Computational Geometry, in:
H. Hong, D. Wang (eds.), Automated Deduction in Geometry, vol. 3763 of Lecture Notes
in Computer Science, Springer, Berlin/Heidelberg, 2006, pp. 1–18, 5th International Work-
shop, ADG 2004, Gainesville, FL, USA, September 16-18, 2004.

[29] G. Melquiond, Gappa : Génération Automatique de Preuves de Propriétés Arithmétiques,
INRIA, France, 2010, version 0.12.3. http://gappa.gforge.inria.fr.

[30] D. Pichardie, Y. Bertot, Formalizing Convex Hull Algorithms, in: R. J. Boulton, P. B.
Jackson (eds.), Theorem Proving in Higher Order Logics, vol. 2152 of Lecture Notes in
Computer Science, Springer, Berlin/Heidelberg, 2001, pp. 346–361, 14th International Con-
ference, TPHOLs 2001, Edinburgh, Scotland, UK, September 3-6, 2001.

[31] F. P. Preparata, M. I. Shamos, Computational Geometry : An Introduction (5th printing),
Monographs in Computer Science, Springer-Verlag, New York, 1993, 398 pages.

[32] R. Sedgewick, Algorithms, Addison-Wesley Publishing Company, 1983, 552 pages.
[33] The Coq Development Team, The Coq Proof Assistant - Reference Manual, INRIA, France,

2009, version 8.2. http://www.lix.polytechnique.fr/coq/distrib/current/refman/.
[34] W. Tutte, Combinatorial Oriented Maps, Canadian J. Math. 31 (5) (1979) 986–1004.
[35] K. Weiler, Edge-based Data Structures for Solid Modeling in Curved-surface Environments,

IEEE Computer Graphics and Applications 5 (1) (1985) 21–40.

38

