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Abstract We address in this paper the problem of the
data structures used for the representation and the ma-
nipulation of multiresolution subdivision surfaces. The
classically used data structures are based on quadtrees,
straightforwardly derived from the nested hierarchy of
faces generated by the subdivision schemes. Neverthe-
less, these structures have some drawbacks: specificity to
the kind of mesh (triangle or quad); the time complex-
ity of neighborhood queries is not optimal; topological
cracks are created in the mesh in the adaptive subdivi-
sion case.

We present in this paper a new topological model
for encoding multiresolution subdivision surfaces. This
model is an extension to the well-known half-edge data
structure. It allows instant and efficient navigation at
any resolution level of the mesh. Its generality allows the
support of many subdivision schemes including primal
and dual schemes. Moreover, subdividing the mesh adap-
tively does not create topological cracks in the mesh.
The extension proposed here is formalized in the combi-
natorial maps framework. This allows us to give a very
general formulation of our extension.

Keywords geometric modeling · topological model ·
combinatorial maps · multiresolution meshes · subdivi-
sion surfaces

1 Introduction

Modeling with multiresolution subdivision surfaces is gain-
ing more and more popularity among the computer graph-
ics community [37]. Indeed, this technique offers many
advantages. It combines the simplicity and topological
generality of subdivision surfaces, with the possibility of
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editing a mesh at different resolution levels, leading to
small to large scale smooth modifications of the surface.

Many tools have been provided in recent years to
deal with such surfaces, like inserting non-smooth fea-
tures [3], Boolean operations [2], features cut-and-paste
[4], trimming [5], . . . However, the authors of such tools
generally focus their interest on the quality of the result-
ing surfaces, and not on the underlying data structure.

There are different ways to obtain a multiresolution
subdivision surface. One can start from a manually de-
signed base mesh and generate the finer levels using
subdivision schemes. Another way is to use remeshing
techniques such as MAPS [19] that starts from an ar-
bitrary fine mesh and produce a multiresolution subdi-
vision mesh. Regardless of the way these surfaces are
built, we focus in this paper on models and data struc-
tures that support multiresolution edition and adaptive
subdivision.

Multiresolution edition means deformation of the sur-
face at any resolution level of the mesh. An edit on some
fine level will lead to a local deformation, while an edit
on some coarse level will lead to a large scale – detail pre-
serving – deformation of the surface. Each modification
is repercuted on the finer levels – known as the synthe-
sis process – and on the coarser levels – known as the
analysis process.

By adaptive, we mean that the subdivision depth can
differ along the mesh according to some geometrical cri-
teria (local curvature, distance to limit surface, point of
view, ...). Due to the multiresolution edition support,
adaptivity has to be managed in a fully dynamic way.
During each update, subdivision depth can be locally in-
creased to fulfill the criteria or decreased if the constraint
is relaxed.

In this context a general and efficient data structure
should provide the following features:

• direct and simple access to all intermediate resolu-
tion levels of the mesh, as editing operations can be
performed on any resolution level;
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• very efficient adjacency queries on each level, as these
queries are the most widely used in the synthesis and
analysis processes of multiresolution edition;

• support of adaptive subdivision, i.e. subdivision at
variable depth on the mesh, as it enables strong mem-
ory savings;

• support of many subdivision schemes in the same
general data structure, as this can be a great ad-
vantage to stronlgy reduce the development cost of
modeling tools.

1.1 Previous work

The classical data structure used for encoding multires-
olution subdivision surfaces is the quadtree [10], which
is naturally derived from the nested hierarchy of faces
generated by the subdivision schemes. The only repre-
sented topological entity is the face, limited to triangles
or squares. Quadtrees are not a topological structure: re-
lations between the cells are not explicitely represented.
This leads to an easy and straightforward implementa-
tion.

But this simplicity can turn into a drawback. When
performing adaptive subdivision in a mesh, neighboring
faces may have different subdivision depths. This causes
holes or cracks in the mesh (see figure 1a). The boundary
of the non-subdivided face cannot fit to its new neigh-
borhood as it cannot be anything else than a triangle or
a square. Techniques have been developped to fix this
problem. These are generally based on the construction
of restricted quadtrees [17,25] which does not allow two
neighboring faces to have more than one resolution level
of difference. Additional triangles are then added to the
mesh to fix the cracks (see figure 1b). These triangles
have to be removed in order to update the subdivision
in this area. These additional treatments mitigate the
advantages of the simplicity of the structure.

(a) (b)

Fig. 1 Topological cracks with quadtrees

The adjacency operators have to be specifically devel-
oped for triangle or square meshes. Moreover, the neigh-
borhood relations have to be computed and are executed
in a time linear in the number of resolution levels – i.e.
the depth of the quadtree. Data structures and algo-
rithms have been proposed to improve the time complex-
ity of these queries: linear quadtrees [29,20] are a pointer-

less structure that store the leaves of a quadtree linearly
in an array, and resolve neighborhoods queries using con-
stant time arithmetic operations on indices. However,
this kind of structure is not well suited for dynamic and
adaptive quadtrees, as we explain later.

The Qreg data structure presented in [31] proposes
a two-layer representation that exploits the regularity of
meshes, notably those generated by a subdivision pro-
cess. The first layer stores the adjacencies between re-
gions of the original mesh (in the simpler case a region
corresponds to a single face). The second layer associates
a submesh to each of these regions that satisfies regular-
ity constraints. These regular subdivisions can be refined
hierarchically. Adaptive subdivision can be achieved by
refining each region to a different level. This leads to a
limited adaptivity since subdivision has to be achieved
regularly within each region. Nevertheless, a fine-grain
adaptivity is possible using a tree structure, but this
reintroduces the drawbacks of the tree structures, and
this possibility is not much developed in the paper.

Fig. 2 Polygonal mesh represented with half-edges

The half-edge data structure [36] is a very general
and efficient topological structure: it can represent arbi-
trary polygonal meshes (see figure 2) and neighborhood
queries are executed in constant time. This data struc-
ture has already been used in the context of subdivision
surfaces [30], but only the finest resolution level is rep-
resented: each subdivision step is effectively applied on
the half-edge structure using some Euler operators. Af-
ter each subdivision step, the mesh describing the previ-
ous resolution level is lost. This structure has also been
used in a multiresolution context, but in a decimation
approach based on edge collapses on triangular meshes
[26]. There is no notion of resolution levels here, and
only the base mesh and the current decimated mesh are
available for traversal.

1.2 Our contribution

We present in this paper a multiresolution extension
of the half-edge data structure. This structure can ef-
ficiently be used to represent and manipulate multires-
olution subdivision surfaces. Within the hierarchy, each
resolution level of the mesh is instantly available as a
”single resolution” half-edge structure. Thus, it inherits
the advantages of this structure: polygonal meshes can
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be managed and adjacency queries are executed in an
optimal constant time on each resolution level.

Adaptive subdivision is handled in a simple way with-
out creating topological cracks in the mesh. Indeed, be-
ing a cellular topological model, half-edges can man-
age polygonal faces. This allows to always maintain a
correctly connected mesh. Moreover, the generality of
this structure enables to use it with many subdivision
schemes, including primal and dual schemes. Despite this
generality, memory requirements are shown to be quite
equivalent to that of the quadtree structures.

The half-edge data structure is an implementation of
the theoretical model of the 2-dimensional combinatorial
maps [15,35] (or 2-maps). This model and its extensions
[21,22] have gained popularity through numerous works
[13,9]. Combinatorial maps have already been used in
a multiresolution context, but in the image processing
field for a segmentation application using decimation al-
gorithms [6,7,16]. In this work, combinatorial pyramids
are defined. Their definition is quite close to the one
we give in this work. However, the goals and the way
to construct the hierarchy are different: combinatorial
pyramids are constructed from a fine mesh, simplified
by cell contraction and suppression operations, while we
construct the hierarchy by successive refinements of a
coarse mesh.

The definition of the operators meets strong con-
straints and is closely related to the construction of the
hierarchy and to the algorithms that are applied on it.
Our model needs more freedom in the definition. Indeed,
we want it to be usable with many subdivision schemes
that use different refinement operators (edge split, edge
insertion, edge flip, ...).

2-maps can be seen as a specialization of a more gen-
eral model called hypermaps. We are going to formulate
our multiresolution extension in this general formulation.
Then, we deduce the definition of the multiresolution 2-
maps, and translate it into a data structure that is an
extension of the classical half-edge data structure. This
approach makes it possible to apply the proposed mul-
tiresolution extension to all the models derived from the
combinatorial maps. In particular, it can be applied to
higher dimensions models like 3-maps in order to repre-
sent multiresolution volumetric meshes or to generalized
maps or G-maps like in [16]. We did not choose to use
G-maps in this work as this would have be more mem-
ory consuming with the only advantage of being able to
manage unoriented surfaces which is not crucial in our
current context.

1.3 Paper outline

We begin this paper by presenting the classical half-edge
data structure, and expressing this data structure in the
combinatorial maps framework. In the third section we
expose our multiresolution extension to this model, and
translate it into a data structure.

Then we show how it can be efficiently applied to
the representation of adaptive multiresolution subdivi-
sion surfaces. In the fifth section we compare this struc-
ture with the classical quadtrees in terms of time com-
plexity and memory requirements.

Finally we conclude and give some future perspec-
tives to this work.

2 Half-edges and combinatorial maps

In this section, we first make some recalls about the half-
edge data structure and the combinatorial 2-maps model
which is its formalization. Then, we define the hyper-
maps which is the general framework for combinatorial
maps.

2.1 Half-edges and 2-maps

A 2-dimensional mesh consists in the discretization of a
surface in a cellular complex composed of cells of differ-
ent dimensions (faces, edges, vertices) connected by ad-
jacency relationships. The half-edge data structure uses
the adjacencies between edges to represent the topol-
ogy of the mesh of orientable 2-manifold. As illustrated
above, arbitrary polygonal meshes can be represented.

Each edge of the mesh consists in two symmetric half-
edges. This structure comes in two definitions: each half-
edge is associated with either a vertex-edge pair (figure
3(a)), or a face-edge pair (figure 3(b)). Each half-edge is
linked to its opposite, next and previous half-edges.

(a) Vertex-edge pair (b) Face-edge pair

Fig. 3 The half-edge data structure

Two types of information are needed to fully describe
an object: the topological relationships, and the embed-
ding, i.e. the geometrical data associated to each topo-
logical entity. In most of the cases, we simply associate
3D points to the vertices of the mesh. The embedding of
the other cells is computed by linear interpolation. More
evolved embedding models can also be used, attaching
for example curves to the edges or surface patches to
the faces. The half-edges attached to a same topolog-
ical entity share links to the corresponding embedding
information.

When implementing such a structure, a mesh can be
simply represented by a set of half-edges. The topologi-
cal links are materialized by pointers between the half-
edges. The previous pointer may not be stored as it is
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α0
α1α1

(a) Primal 2-map

φ1

φ2

(b) Dual 2-map

Fig. 4 The 2-maps

not necessary if the operators that deal with the next link
guarantee to never break the cycle of half-edges. It is the
same choice as implementing simply or doubly linked cir-
cular lists (the pointer can be stored if the storage cost is
not crucial). In case of vertices-only embedding, all the
half-edges attached to the same vertex share a pointer
to the same 3D point. A simple example of a C++ im-
plementation of the half-edge data structure is shown in
the appendix (listing A.1).

The model of the 2-maps is the formalization of the
half-edge data structure. A 2-map is a 3-tuple:

M = (D, α0, α1)

where D is a finite set of darts (the half-edges); α0 (the
opposite pointer) is an involution on D without fixed
point, i.e. a permutation such that α0(α0(x)) = x and
α0(x) 6= x, for all x in D; and α1 (the next pointer) is
a permutation on D. The previous pointer of the half-
edge data structure is here implicitly represented by the
inverse permutation α−1

1 .
The 2-maps also come in two definitions, called pri-

mal and dual, corresponding respectively to the vertex-
pair and face-pair versions of the half-edge data struc-
ture. In both cases the darts of the map are linked by
one involution and one permutation. To differentiate the
two versions, different names are given to these relations.
In the primal case (figure 4(a)), the involution is called
α0 and the permutation, which turns around vertices is
called α1. In the dual case (figure 4(b)), the involution is
called φ2 and the permutation, which turns around faces
is called φ1. One can easily switch from one version to
the other as we have φ2 = α0 and φ1 = α0 ◦ α1.

The embedding of a 2-map is a function which as-
sociates a geometrical entity to a topological cell. For
0-embedding for example, the function em0 associates a
3D point to each vertex of the map, i.e. all the darts
attached to a same vertex have the same image by the
function em0.

2.2 The hypermaps

Hypermaps are the general framework from which all
the models derived from the combinatorial maps can be
obtained by adding some constraints. A hypermap is a
(n + 1)-tuple:

G = (D, α0, . . . , αn−1)

where D is a finite set of darts, and the αi, with i ∈
[0, n− 1], are permutations on D.

For example, the 2-maps described above can be re-
covered from this definition by fixing n = 2 and con-
straining the α0 permutation to an involution.

3 The multiresolution extension

In this section we expose our multiresolution extension
of the combinatorial maps. We define it firstly on the
hypermaps, then by adding some constraints we recover
the definition of the multiresolution 2-maps.

Finally, we translate this model into a data structure
which can be seen as an extension of the half-edge data
structure.

3.1 Multiresolution hypermaps

A multiresolution hypermap is defined as a hierarchy of
hypermaps. It is composed of a set of darts D and topo-
logical relations between these elements.

As shown in figure 5, the darts of D are differentiated
by the resolution level in which they are introduced in the
map. We can see here an example of three consecutive
resolution levels. The darts of the starting map (or level
0 map) belong to the set L0 (also named D0). The set
of new darts L1 is introduced in the map on resolution
level 1 and added to L0 to form the set D1. On the next
resolution level, the set of darts L2 is added to D1 to
form the set D2, and so on. . .

More formally, in a multiresolution map, the sets of
darts form a sequence {Di}i≥0 of sets such that:

D0 ⊂ D1 ⊂ D2 ⊂ . . . ⊂ Di ⊂ . . .

The set of darts Di contains all the darts introduced
in the resolution levels inferior or equal to i. The total
number of darts is equal to the number of darts needed to
describe the finest resolution level. We have the following
formulations:

Di =

i
⋃

j=0

Lj D =
⋃

i≥0

Li

The topological relations between the darts are de-
fined on every resolution level. We choose to note it by
indexing the relation with the queried level: for any per-
mutation σ on D and for any dart d ∈ Di, σi(d) is the
dart linked to d by the permutation σ on resolution level
i.

Thus, a multiresolution hypermap is defined as a (n+
1)-tuple:

G =
(

D, {αi
0}i≥0, . . . , {αi

n−1}i≥0

)
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L0(D0)

D1 = L0 ∪ L1

D2 = L0 ∪ L1 ∪ L2

L1

L2

Fig. 5 Successive sets of darts

such that for all i ≥ 0, the (n + 1)-tuple:

Gi = (Di, αi
0, . . . , α

i
n−1)

is the hypermap describing the resolution level i.
The embedding function is also defined on every res-

olution level. For 0-embedding, for any dart d ∈ Di,
emi

0(d) is the 3D point associated with the vertex of d
on resolution level i.

3.2 Multiresolution 2-maps

Multiresolution 2-maps are obtained from the above gen-
eral definition by fixing n = 2, and constraining the αi

0

relations to involutions.
A multiresolution 2-map is defined as a 3-tuple:

M =
(

D, {αi
0}i≥0, {αi

1}i≥0

)

such that for all i ≥ 0, the 3-tuple:

M i = (Di, αi
0, α

i
1)

is the 2-map describing the resolution level i.
Let us illustrate the topological relations in a mul-

tiresolution 2-map. Figure 6(a) shows an edge at resolu-
tion levels l and l + 1. On level l the edge is formed by
two darts d1 and d2 linked by αl

0. On level l + 1, a new
vertex is inserted, introducing two new darts d3 and d4.
These darts are linked to d1 and d2 by αl+1

0 . The rela-
tions of level l between the darts of Dl are not lost by
this operation.

Figure 6(b) shows a vertex at resolution levels l and
l + 1. On level l the vertex is composed of two darts d1

and d2, linked by the permutation αl
1. On level l + 1, a

new dart d3 is introduced in the vertex and thus in the

d1d1
d2d2 d3 d4

αl

0αl

0

αl+1

0αl+1

0

(a) α0 involution

αl

1

αl

1

αl+1

1

d1d1

d2d2

d3

(b) α1 permutation

Fig. 6 Toplogical relations in a primal multiresolution 2-map

permutation αl+1

1 . Here again, the relations of level l are
still available.

The dual definition of the multiresolution 2-maps is
simply obtained by combining the relations of the pri-
mal definition. We define φi

1 = αi
0 ◦αi

1, and φi
2 = αi

0. We
illustrate now the topological relations in a dual mul-
tiresolution 2-map.

d1

d1

d2

d2

d3

d4 φl

2

φl

2

φl+1

2

φl+1

2

(a) φ2 involution

d1d1

d2

d2

d3d3

d4

(b) φ1 permutation

Fig. 7 Topological relations in a dual multiresolution 2-map

Figure 7(a) shows an edge at resolution levels l and
l+1. On level l two faces are sewn along an edge formed
by the two oriented darts d1 and d2 linked by φl

2. On
level l+1, a new face is inserted between the two oriented
darts, introducing some new darts d3 and d4. These darts
are linked to d1 and d2 by φl+1

2 , without altering the link
between d1 and d2 on level l by the involution φl

2.

Figure 7(b) shows a face at resolution levels l and
l + 1. On level l the face is composed of three darts d1,
d2 and d3, linked by the permutation φl

1. On level l+1, a

new dart d4 is introduced in the permutation φl+1

1 . Here
again, the relations of level l are still available.
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3.3 Topological cells and resolution levels

We go back here to the definition of the topological cells
in the 2-maps model, and show how it extends to the
multiresolution definition.

In a classical 2-map, the cells of the subdivision are
implicitly represented by subsets of the set of darts D,
those subsets being formally defined as orbits. For any
permutation σ on D, the orbit 〈σ〉(d) is the set of darts
{d, σ(d), ..., σj(d)}, where j is the smallest positive inte-
ger so as σj+1(d) = d. In other words, applied on a dart d
of D, an orbit represents the set of darts reachable from
d by successive applications of the permutation σ. For
example, in a dual 2-map, all the darts of a face are tra-
versed by applying successively the φ1 permutation (the
next pointer of the half-edge structure).

Formally, in primal 2-maps the vertices are defined
by the orbit 〈α1〉, the edges by the orbit 〈α0〉, and the
faces by the orbit 〈α0 ◦ α1〉.

In dual 2-maps the vertices are defined by the orbit
〈φ2 ◦ φ1〉, the edges by the orbit 〈φ2〉, and the faces by
the orbit 〈φ1〉.

In a multiresolution 2-map, the cells of the subdi-
vision are defined on each resolution level l. These cells
are implicitly represented by subsets of Dl, those subsets
also being defined as orbits. These orbits are defined here
exactly in the same way as in classical 2-maps, using the
topological relation corresponding to the queried reso-
lution level. For example, edges of resolution level l in
primal multiresolution 2-maps are defined by the orbit
〈αl

0〉.

3.4 Multiresolution half-edges

We now translate the model of multiresolution 2-maps
into a data structure. We use here again the terminology
used for the half-edge data structure.

As we have seen in the definition of the model, a set
of half-edges Li is introduced on each resolution level i.
The multiresolution half-edges can thus be stored in an
array of lists, where the ith cell of the array contains the
list containing the set Li.

Thus, traversing the half-edges describing the mesh
of resolution level i (i.e. the darts of Di) is performed by
traversing the lists of darts contained in the cells of the
array having an index inferior or equal to i.

The relations between multiresolution half-edges are
materialized by pointers, indexed by the resolution level.
Thus, each multiresolution half-edge stores, for each re-
lation, an array of pointers corresponding to the links at
different resolution levels. As a multiresolution half-edge
does not have relations at a level which is inferior to its
introduction level, this array stores only the necessary
relations. Let a be the introduction level of a half-edge
h, and k be the maximum resolution level of the mesh:
h stores only (k − a) links for each relation. Thus, the

pointer to the linked half-edge on resolution level i is
stored in the (i − a)th cell of the array.

Each multiresolution half-edge stores such an array
for the opposite and next relations (the previous link
being unnecessary if a consistent cycle is always main-
tained). Another similar array is stored for the pointers
to the embedding, so that the vertices of the mesh can
have a different embedding on each resolution level. The
introduction level of the half-edge is also stored (one byte
is far enough for this).

By fixing the level parameter to a given value l and
considering the half-edges of Dl, we simply traverse the
mesh describing the corresponding resolution level ex-
actly as if we were traversing a classical half-edge struc-
ture.

An example of a C++ implementation of the mul-
tiresolution half-edge data structure is shown in the ap-
pendix (listing A.2).

0 0
0 0

0 01 1

d1
d1 d2

d2 d3 d4

(a) opposite link

0
1

01

0

0

0

d1
d1

d2

d2

d3

(b) next link

Fig. 8 Indexation of the links in primal multiresolution half-
edges

Figures 8 and 9 illustrate the indexation of the rela-
tions in the same way as before, but now showing the
arrays of pointers corresponding to the links on resolu-
tion levels 0 and 1.

We see in figure 8(a) and 9(a) that the array of oppo-
site pointers of d1 and d2 contains two elements on level
1. For these two half-edges whose introduction level is 0,
the cell of index 1 contains the pointers of resolution level
1. For the half-edges d3 and d4 whose introduction level
is 1, it is the cell of index 0 that contains the pointers of
resolution level 1.

In figures 8(b) and 9(b), one can notice that for some
of the half-edges, the next link is the same on the two
levels. We will see later how this redundant storage can
be avoided.
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0

0

0

0

0

0

1

1

d1

d1

d2

d2

d3

d4

(a) opposite link

0

0

0 0 1

0

1
0

1

0

d1

d1

d2d2

d3

(b) next link

Fig. 9 Indexation of the links in dual multiresolution half-
edges

4 Application to multiresolution subdivision

surfaces

In this section, we will see how the data structure that
we just defined can efficiently represent multiresolution
subdivision surfaces. First, we recall some notions about
subdivision surfaces and their multiresolution extension.

4.1 Background notions

Subdivision surfaces The basic idea of subdivision sur-
faces is to define a smooth surface as the limit of an infi-
nite sequence of successively refined polyhedral meshes.
Each finer mesh is obtained from a coarse one by us-
ing a set of refinement rules which defines a subdivision

scheme. One must distinguish clearly here the two steps
of the refinement process. In the first step, the topol-
ogy of the mesh is subdivided (for example by inserting
vertices). During the second step, the geometry is com-
puted, assigning a 3D point to each vertex of the finer
mesh. Different schemes lead to limit surfaces with dif-
ferent smoothness characteristics.

Fig. 10 2 subdivision steps on a cube

The topology refinement process is usually classified
in two families called primal and dual subdivision. In
the primal subdivision schemes, the faces of the mesh
are split into several faces by cutting their boundary

edges and connecting the created vertices by new edges
to form new faces. The Loop scheme [23], the Catmull-
Clark scheme [8], and the Butterfly scheme [14,39] are
well-known primal schemes. An example of primal sub-
division is given in figure 11a, where one square face is
subdivided into four faces.

In the dual subdivision schemes, the vertices of the
mesh are split, the faces of the coarse mesh are con-
tracted and the created holes are filled with new faces.
The Doo-Sabin scheme [12,11] and the Midedge scheme
[27] are well-known dual schemes. An example of dual
subdivision is given in figure 11b.

(a) Primal subdivision

(b) Dual subdivision

Fig. 11 Topological subdivision

The geometry computing process is also usually clas-
sified in two families called interpolating and approxi-
mating subdivision. These two families share the way
the new positions are computed: for a vertex of the finer
mesh, its new position is computed locally by applying a
mask on the positions of the neighboring vertices in the
coarse mesh. The size and the coefficients of the mask
differ from one scheme to the other, leading to different
kinds of limit surfaces.

In an approximating scheme, the positions of all the
vertices of the finer mesh are computed and moved closer
to the limit surface. The Loop scheme, the Catmull-Clark
scheme and the Doo-Sabin scheme cited above are ap-
proximating. In an interpolating subdivision scheme, the
vertices of the coarse mesh already lie on the limit sur-
face and only the positions of the new vertices of the finer
mesh are computed. The Butterfly subdivision scheme
cited above is interpolating.

For additional details, we refer the reader to this
course on subdivision surfaces [38].

Multiresolution Multiresolution subdivision surfaces ex-
tend the concept of subdivision surfaces by keeping all
the intermediate meshes between the coarser one and the
finer one (which will be called levels of resolution), and
by allowing detail vectors to be introduced at each of
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these levels. The detail vectors are computed as differ-
ences between levels and are expressed in a local frame.
Hence, a finer mesh is computed by adding detail vectors
to the subdivided coarse mesh. This representation was
introduced among others in [24,40].

A close connection exists between multiresolution sur-
faces and wavelets, and in particular two operations kno-
wn as analysis and synthesis. Analysis computes posi-
tions of vertices on a coarse level i − 1 by applying a
reverse subdivision filter [1] or a non-shrinking smooth-
ing filter [33] to the points on level i. Detail vectors on
level i are computed as differences between the two lev-
els. Conversely, synthesis reconstructs the data on level
i by subdividing the mesh of level i − 1 and adding the
detail vectors.

A multiresolution subdivision surface can be constru-
cted either starting from a level 0 mesh and creating the
finer levels by applying a subdivision scheme (also called
”coarse to fine” approach), or starting from a fine mesh
and constructing the coarser levels by applying the anal-
ysis process (also called ”fine to coarse” approach). In
the latter case, the starting mesh must have subdivision
connectivity, i.e. it must have the same connectivity as if
it had been generated by a subdivision surface scheme.
The problems of subdivision connectivity and of process-
ing arbitrary meshes are widely studied (for example in
[34,19]).

Once a multiresolution subdivision surface is con-
structed, the mesh can be edited at any level of reso-
lution. An edit at some coarse level will lead to a large
scale deformation, keeping the high frequency informa-
tions thanks to the detail vectors. An edit at some finer
level will lead to a more localized deformation. At each
edition, the finer levels are updated by the synthesis pro-
cess, and the coarser levels are updated by the analysis
process, computing the detail vectors at the same time.

4.2 Primal schemes

During a step of a primal subdivision scheme, edges of
the mesh are cut, and new edges are introduced to form
new faces. We use the primal version of the multires-
olution half-edge structure to handle this kind of sub-
division. The operations are executed on the mesh in
the same way as in a standard half-edge structure, ex-
cept that the new half-edges are introduced and linked
with the others in the new resolution level – thus keeping
available the old resolution level.

Figure 12 illustrates a detail of a triangle mesh at two
consecutive resolution levels l and l + 1 using the Loop
subdivision scheme. The half-edges in bold orange are
those that were introduced in level l + 1.

Figure 13 illustrates a detail of a square mesh at
two consecutive resolution levels using the Catmull-Clark
subdivision scheme.

We can notice that in primal subdivision schemes,
the valence of the existing vertices is not modified by a

Fig. 12 Loop with multiresolution half-edges

Fig. 13 Catmull-Clark with multiresolution half-edges

subdivision step. This means that for a multiresolution
half-edge h introduced on a resolution level l, its next

link do not change in the finer resolution levels. Thus, it
is unnecessary to redefine on each finer resolution level
that the next link of h is the same than on resolution level
l. In this particular case, we can store a simple pointer
instead of the array of next pointers, and use this pointer
on every resolution level finer than l. In a more general
case, it can be solved in the same way as adaptivity is
managed, as we explain in the following.

4.3 Adaptivity

In an adaptively subdivided mesh, the subdivision steps
are not always performed regularly all over the mesh.
Different areas of the mesh reach different subdivision
depths. The goal is here to save the memory that would
have been spent performing a regular subdivision all over
the mesh. The same precision in the approximation of the
surface is not needed in the flat areas, where large faces
are a sufficiently good approximation, and in the highly
detailed or high curvature areas, where smaller faces are
needed. Different metrics or criteria can be used to decide
when to stop or continue the subdivision.

Following a given criterion, it can be decided that a
face is no longer subdivided starting from a given level.
This implies that some edges of the mesh are no longer
cut between two consecutive levels. This means that for
a multiresolution half-edge h whose corresponding edge
stops being subdivided starting from a resolution level l,
its opposite link does not change in the finer resolution
levels. Thus, it is unnecessary to redefine this link on
each finer resolution level.
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This is managed in the following way: if a relation
does not change for a multiresolution half-edge between
two resolution levels, then we simply do not redefine any-
thing on the finer resolution level (i.e. its corresponding
array of pointers does not grow and no pointer is dupli-
cated). In consequence, the way of accessing the topolog-
ical links has to be changed, as shown in listing A.3: if
nothing is defined on the queried resolution level (i.e. if
the array of pointers is too small for the queried resolu-
tion level), we pick the information corresponding to the
maximum resolution level where something was defined
(i.e. the last pointer in the array). The same treatment
is also applied to access the embedding information.

This can sound limiting, as it forbids a modification
of a relation at a resolution level l, if no modification
was applied since some previous resolution level (there
cannot be ”holes” in the array). But this suits well to
the context of subdivision surfaces. Indeed, a face is not
subdivided on level l if it has not already been subdi-
vided on the previous resolution levels. Nevertheless, if
it is necessary in some application, this can be solved
by duplicating the last pointer of the array until the cell
corresponding to the level where a modification happens
(i.e. filling the ”holes” in the array), or by replacing the
array of pointers by a lookup table (but in this case, ac-
cess to the pointer of a given resolution level would not
be executed in constant time).

As already discussed above, in the structures based
on quadtrees, adaptivity generates topological cracks in
the mesh, at the meeting of areas of different resolution
levels. Holes appear in the mesh between neighboring
faces of different refinement depths (see figure 14a). This
happens because the only topological entity that is ma-
nipulated here is the face, while the subdivision process
also involves the edges of the mesh.

In a multiresolution map, the subdivision of a face im-
plies the subdivision of its edges. The neighboring faces
are affected by this operation even if they are not subdi-
vided themselves. Indeed, as it can be seen in figure 14b,
the left face is now a pentagonal face. Multiresolution
maps being a cellular model, this face is here naturally
managed.

(a) Quadtree (b) Multiresolution half-
edges

Fig. 14 Adaptive Catmull-Clark subdivision with a
quadtree and with multiresolution half-edges

Figure 15 illustrates an adaptively triangle mesh at
two consecutive resolution levels. Between these levels,
only the central face is subdivided. Thus only three edges
are cut and the three surrounding faces simply become
here quadrilateral faces.

Fig. 15 Adaptive Loop subdivision

Figure 16 shows examples of objects modeled with
multiresolution half-edges and obtained by adaptive Cat-
mull-Clark (16(a) and 16(b)) or Loop (16(c) and 16(d))
subdivision. The color is function of the resolution depth
of the faces. The adaptivity is here automatically driven
by a geometric criterion. Subdivision depth follows the
dihedral angle between adjacent faces: a face is subdi-
vided only if the angle between its normal and the nor-
mals of its neighboring faces exceeds a given threshold.
Different criteria can be used depending on the goals of
the applications. The resulting mesh is here automati-
cally obtained during the edition by applying subdivision
or coarsening until satisfaction of the geometric criterion
in the area concerned by the edition.

A restriction is also introduced to forbid adjacent
faces to have more than one level of difference. Although
this restriction leads to more subdivision than needed
around the high curvature areas, it allows to have al-
ways full subdivision masks. This means that all the
neighboring vertices needed to compute a position during
the subdivision process are always present in the mesh.
This avoids the temporary computation of the eventually
missing vertices. The resulting precision in the approxi-
mation of the limit surfaces is also better as the size of
the faces decrease progressively around these areas. How-
ever, as this restriction leads to more subdivision than
needed and as it is not necessary in the definition of the
model, it can be disabled if the memory usage is a crucial
parameter in an application.

4.4 Dual schemes

During a step of a dual subdivision step, the vertices are
split and new faces are introduced in the mesh. We use
here the dual version of the structure to handle this kind
of subdivision. Here again, the operations on the mesh
are done in the same way as in a standard half-edge
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(a)

(b)

(c)

(d)

Fig. 16 Objects modeled with multiresolution half-edges
(Catmull-Clark and Loop schemes)

structure, except that the new half-edges are introduced
and linked in the new resolution level.

In dual subdivision schemes it is the number of edges
of the faces that is not modified during a subdivision
step. Here again, once the next link is set on the intro-
duction level of a half-edge, it does not change in the
finer levels. The storage of this redundant information
can be avoided in the same way as explained above.

Fig. 17 Doo-Sabin with multiresolution half-edges

Figure 17 illustrates a detail of a mesh at two consec-
utive resolution levels using the Doo-Sabin subdivision
scheme.

Fig. 18 Object modeled with multiresolution half-edges
(Doo-Sabin scheme)

Figure 18 shows an example of object modeled with
multiresolution half-edges and obtained by Doo-Sabin
subdivision.

5 Comparison

As the quadtree is a widely used data structure for the
representation of multiresolution adaptive subdivision sur-
faces, let us compare to it in terms of time complexity
and memory space requirements.
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5.1 Time complexity

In the framework of multiresolution subdivision surfaces,
the most frequently executed operations are adjacency
queries. These are needed as well while applying the
subdivision scheme, as while executing the analysis al-
gorithm.

In a multiresolution half-edge structure, basic adja-
cency queries are executed in constant time, whatever
the considered resolution level. Indeed, adjacent cells are
retrieved directly by following pointers indirections. More
evolved neighborhood algorithms are then built using
these constant time operators. The time complexity of
these algorithms is typically linear to the size of the con-
sidered neighborhood.

Let us enumerate some of the basic constant time ad-
jacency operators. Vertex-vertex adjacency (figure 19a)
is resolved following 1 pointer that leads from one half-
edge of a given vertex to one half-edge of a neighboring
vertex; edge-edge adjacency (figure 19b) is resolved fol-
lowing 1 or 2 pointers and face-face adjacency (figure
19c) following 1 pointer. These operators are executed
with the same efficiency on any resolution level (as every
level can be traversed exactly as a standard half-edge
structure).

(a) (b)

(c)

Fig. 19

Given these operators, more evolved algorithms can
be built. Figure 20 illustrates a widely used algorithm
that consists in visiting all the neighbors of a given ver-
tex. The geometry of the central vertex on level l + 1 is
computed as a combination of the positions of its neigh-
bors on level l.

In the primal version of the structure, starting from
the vertex of the half-edge h, traversing all its neighbor-

Fig. 20 Neighbors traversal

ing vertices on level l is performed as follows: the vertex
orbit of h is traversed following the next pointers, and
for each half-edge of this orbit, the adjacent vertex is re-
trieved by crossing the corresponding edge following the
opposite pointer of the considered level (”jumping” di-
rectly over the higher resolution mesh). This algorithm
is executed in an optimal time linear in the number of
neighbors of the vertex, and does not depend on the res-
olution level or on the maximum resolution depth of the
mesh.

Listing A.4 in the appendix shows an example of how
this kind of algorithm can be implemented in the data
structure.

Similar algorithms can be written for example to tra-
verse all the vertices of a face, or all the adjacent faces
of a face on level l, whatever the resolution level of these
neighboring faces – in the adaptive setting they can have
a resolution level inferior or equal to l.

In a classical forest of quadtrees, neighborhood queries
within a single quadtree are resolved in the standard way
by ascending the tree to the least common parent when
attempting to find the neighbor across a given edge.
Neighborhood relations between adjacent trees are re-
solved explicitly at the level of a collection of roots, i.e.
faces of the level 0 mesh. These adjacency queries are
performed in a time linear to the the depth of the tree,
i.e. the maximum level of the multiresolution structure.
Even if in practice this execution time is bounded by a
small value, this value is not 1. These adjacency queries
being the most used operators when editing a multires-
olution surface, this improvement is not negligible.

We have seen that constant time adjacency queries
algorithms have been developped for linear quadtrees,
as well for square [29] as for triangle [20] meshes. But
besides this, linear quadtrees have numerous drawbacks.

One of the strongest ones is that the level 0 mesh
– i.e. the roots of the quadtrees – has to be fixed and
known a priori in order to be able to resolve adjacencies
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between faces that do not belong to the same base face
– i.e. the same quadtree. These inter-quadtrees queries
have only been defined for a few kind of level 0 meshes:
icosahedron, octahedron or tetrahedron.

Moreover, linear quadtrees are not at all designed for
adaptive subdivision: the only constant time neighbor-
hood queries are those that find equal-sized neighbors –
i.e. faces that lie on the same level of resolution – which
is not the general case in the adaptive setting. The size
of the indexes used for the adjacency queries resolution
grows of two bits with each subdivision step. Therefore
the size of the array grows in parallel, which leads auto-
matically to a regular subdivision.

5.2 Storage requirements

In this section, we give an estimation of the memory
cost of multiresolution half-edges and compare it with
the triangular quadtree structure in the case of regular
subdivision – as no general formulation can be made in
the case of adaptive subdivision, and as regular subdivi-
sion is the worst case for memory requirements.

Let |D| be the number of half-edges in a multireso-
lution half-edge structure. |D| is equal to the number of
half-edges that describe the mesh of maximum level. Let
h0 be the number of half-edges of the level 0 mesh, and
m the maximum level of the multiresolution structure.
As in the primal subdivision schemes presented above
the number of half-edges is multiplied by a factor 4 at
each subdivision step, we have:

|D| = h0 · 4m (1)

To compute the total cost of the topological information
in a multiresolution half-edge structure, we have to count
the number of pointers stored by all the half-edges.

For the opposite relation, this can be done by sum-
ming the size of the arrays of opposite links contained in
each dart. The size of this array is function of the level of
introduction of the half-edge. We can notice that 3/4th
of the half-edges has just been introduced at the maxi-
mum level and thus have only one opposite link; 3/4th of
the rest, i.e. 3/16th, have two opposite links,. . . Formally,
for l between 1 and m, there are |D| · 3

4l half-edges that
have l elements in their array. The half-edges of the level
0 mesh have m + 1 elements in their array.

The total number of elements of the arrays of opposite
links of all the half-edges is then, after replacing |D| using
equation (1):

h0 · (m + 1) + h0 · 3 ·
m
∑

l=1

l · 4m−l

For the next relation, things are much more simpler
as there is just one next link per half-edge, in other words
|D| or h0 · 4m pointers are stored.

The geometrical information is attached to the darts
by an array of pointers to 3D points. If an approximating

scheme is used, as the embedding is indexed by the level,
this array has exactly the same size than the array of
opposite links.

The total number of pointers stored by the half-edges
is then:

h0 · 4m + 2 ·
(

h0 · (m + 1) + h0 · 3 ·
m
∑

l=1

l · 4m−l

)

(2)

The sum in equation (2) can be identified to the

power series:
∑

n≥0

n · xn =
x

(1 − x)2
, which is defined for

| x |< 1. The sum can then be expressed like this:

m
∑

l=1

l · 4m−l ≃ 4m ·
1

4

(1 − 1

4
)2

Equation (2) simplifies in:

33

9
· h0 · 4m (3)

The quadtree structures store five pointers per node
for the topological information: four to the children and
one to the parent. The roots of the quadtrees store seven
pointers: four to the children, and three for the adja-
cency relations between the roots. For the geometrical
information, three supplementary pointers to 3D points
are stored in each node. Let f0 be the number of faces
of the level 0 mesh, and m the maximum level of the
multiresolution structure. As the number of faces is mul-
tiplied by a factor 4 at each subdivision step, the total
number of pointers stored is:

10 ∗ f0 + 8 ∗ f0 ∗
m
∑

l=1

4l (4)

The sum in equation (4) can be identified to the

power series:
∑

n≥0

xn =
1

1 − x
, which is defined for | x |<

1. The sum can then be expressed like this:
m
∑

l=1

4l ≃ 4m · 1

1 − 1

4

Equation (4) simplifies in:

32

3
· f0 · 4m (5)

We can now compute the ratio between the memory
cost of the multiresolution half-edge structure (3) and
the memory cost of the quadtree structure (5). In tri-
angular meshes, there are three half-edges per face. We
have then f0 = h0

3
. With this we can compute the ratio:

33

9
· h0 · 4m

32

9
· h0 · 4m

=
33

32
(6)

We see here that our model needs only about 3%
more memory space than the quadtree structures. If we
take into account the storage cost of the 3D points, which
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is the same for both structures, this ratio is even smaller
in practice.

Using an interpolating scheme to generate the levels
of resolution even make this ratio more advantageous for
multiresolution half-edges than for quadtrees. Indeed, as
introduced vertices already lie on the limit surface, the
embedding information is no more indexed by the level.
The array of pointers to 3D points stored in each half-
edge can then be replaced by a simple pointer. With this,
the ratio between the memory cost of the multiresolution
half-edge structure and the memory cost of the quadtree
structure is 30

32
. In this case, our model uses about 6%

less memory space.

6 Conclusion

In this paper we have presented a new data structure
for the representation of adaptive multiresolution sub-
division surfaces. This new structure is defined as an
extension of the well known half-edge data structure.
The half-edge structure being the practical implemen-
tation of the 2-dimensional combinatorial maps, we have
expressed our extension in the general theoretical frame-
work of hypermaps, thus opening the proposed extension
to all the other models derived from the combinatorial
maps. In particular we plan to study the representation
of multiresolution volumetric meshes by multiresolution
3-maps.

The multiresolution half-edge structure allows instant
and efficient navigation at any resolution level of the
mesh. Indeed, each level can be traversed just like a
classical half-edge structure, inheriting its efficiency for
the topological queries. Its generality allows the support
of many subdivision schemes including primal and dual
schemes. This generality is not obtained at the expense of
storage requirements as it needs almost the same mem-
ory space as quadtree structures. Moreover, the ability
to represent arbitrary faces is a great advantage when
subdividing the mesh adaptively: the coexistence of dif-
ferent resolution levels produces non-regular faces which
are here naturally supported and thus avoids the creation
of topological cracks in the mesh.

We now plan to apply this model to the representa-
tion of multiresolution meshes obtained by other subdi-
vision schemes such as hybrid quad/triangle schemes [32,

28], or the
√

3 scheme [18]. These schemes are not well
supported by classical structures and should be easily
supported by multiresolution half-edges.

A Implementation examples
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