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Abstract. Algebraic specifications allied to rewriting are used more and more
often in design and logical prototyping of programs. We show how these tech-
niques can be applied to a basic problem in computational geometry, namely
the construction of planar subdivisions. We build up a simple, complete and
convergent system of rules to cope with this problem and show how it is trans-
formed to describe concrete and efficient algorithms such as plane-sweep ones.

1 Introduction

Boolean (or set) operations in the plane is a crucial task in computational geometry, de-
serving a faultless and formal definition. Boolean operations amount to the refinement
of superposed subdivisions, and thus, are an extension of line arrangements (see Bentley-
Ottmann algorithm [1]). We generalize it to the self-refinement of embedded combinatorial
maps. These problems have been approached incrementally [2] or more generally [3, 4, 5],
the resulting algorithms beeing described by conventional methods.

Our works rely on the use of algebraic specifications [6, 7] allied to rewriting [8]. Formal
objects are described with abstract data type generators and operations whose behaviour is
modeled by equations. Specifications can be made operational in a term rewriting system
[8], with a correct orientation of equations and sometimes completion. Then, techniques of
logical prototyping can be used to point out possible design errors. These techniques have
been fulfilling in computer graphics languages [9, 10], mechanical proof in geometry [11],
and geometric modeling [12].

The method we propose is more abstract, general and productive than conventional ones for
our geometric problem. It allows us to completely and logically define the self-refinement.
Then, by appropriate choices of control structures and strategies, we are able to derive all
self-refinement algorithms, from the most naive until the most efficient ones.

Finally, we know that the question of numeric approximation is essential in this kind of
problems. But this paper is essentially turned into topological issues and eludes the diffi-
culties due to real numbers which would need studies in themselves [3].
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In section 2, we define the self-refinement of subdivisions. In section 3, we specify maps
in a formal and precise algebraic framework. In section 4 we describe self-refinement as a
simple, convergent rewrite system. In sections 5 and 6, we describe, in terms of rewriting, a
formal method to construct robust and efficient algorithms that result in successive changes
on the simplest system. In section 7, we give some conclusions and present future works.

2 Self-refinement of subdivisions

To compute the union, intersection or difference between planar subdivisions, a convenient
way is to construct a new subdivision where superposed edges or vertices are merged,
intersecting edges are cut and edges are cut at existing incidence points. The result of the
boolean operations can then be obtained from this corefinement by selecting the required
parts. We generalize this idea through the notion of self-refinement of a set of vertices,
edges and faces. This set can contain any number of subdivisions. The self-refinement
consists in transforming it until it represents a (single) subdivision of the plane. In figure 1,
two subdivisions (a) are superposed to form a set (b), which is self-refined (c).
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Figure 1: Example of self-refinement

It is usual now to distinguish topology from embedding. Topology defines vertices, edges
and faces of objects, as well as theirs incidence relationships. Embedding concerns the
position and shape of these cells. Combinatorial embedded maps supply an easy, precise
and concise description of subdivisions [13]. Interest of topology was shown in [14] that
presents a good alternative to describe subdivisions and topological operators.

3 Formal specification of subdivisions

Let us recall that a combinatorial map is a triplet (B, ag, a1) where B is a finite set of darts,
ap is an involution on B without fixed points, i.e. a permutation such that ag(ag(z)) =«
and ag(x) # « for every z, and a7 is a permutation on B. Two darts are said to be linked
with respect to ag (resp. aq), or O-linked (resp. 1-linked), if they belong to the same
orbit with respect to ag (resp. ay). Darts are usually interpreted as half-edges. Thus, two
0-linked darts form a topological edge and an orbit with respect to ay defines a topological
vertex of the map. Figure 2 (a) presents the drawing conventions.

Example 3.1 Figure 2 (b) shows a map with B = {1, ..., 7, -1, ..., -7} and, in cyclic

notation, ag = (-1, 1) (-2, 2) (-3, 3) (-4, 4) (-5, 5) (-6, 6) (-7, 7) and oy = (1, 2) (-2, 3) (-3,
-4,7) (4,-6) (-7, 6, 5,-1) (-5). Thus ag(1) = -1, ag(-1) = 1, and the orbit <ap>(1) = {1,
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Figure 2: Conventions and example of combinatorial map

-1} defines an edge. Similarly, a;(6) = 5, a1(5) = -1, a1(-1) = -7, a1 (-7) = 6, <a1>(6) =
{5, -1, -7, 6}, and the vertex dart 6 belongs to contains darts -7, 6, 5 and -1. O

The geometry of subdivisions is described by the embedding of maps. Each topological
part is associated with a geometrical object of the same dimension. Points are associated
with vertices (0-embedding) and Jordan arcs with edges (1-embedding). Figure 3 presents
the graphical conventions for the embedding. In the following, only 0-embeddings are
considered. Thus, edges are implicitely 1-embedded on line segments.

Figure 3: Graphical convention and example for embeddings

To formalize the notion of subdivision and to avoid problems due to data structures and
programming languages, we define maps and operations handling them through an algebraic
specification [6]. Maps are defined from four basic functional generators: v,10,11,em0 [12].
Generator v creates the empty map, (0(M,z,y) and [1(M,z,y) link in map M dart = to
y with respect to ag or a;. Generator em0(M,z,p) embeds dart = on point p. Note that
the order these operations are applied is indifferent. A map is described by first order
equivalent terms where applications of [0, {1 and em0 are the same but permutated. Thus,
the map of figure 3 can be written [1(emO(I1({1(I10(em0(v,x,q),2,y),y,2),2,t),t,p),t,y).

A set of functional selectors and constructors on maps is then defined through a first order
equational theory. For instance, we build topological selectors to compare in map M the
vertices or edges « and y belong to: equ(M, z,y) and eqe( M, z,y). We also define geometri-
cal selectors to compare embeddedings of vertices or edges: eqgev(M, z,y) and eqee( M, z,y).
Among the constructors that modify the topology and the geometry of a map, we define
cutee(M,z,p) that cuts at point p the edge z belongs to and merge(M, z,y) that merges
two distinct vertices reordering the 1-links of these two vertices. Finally, the destructor
dv(M,z) deletes dart 2 from the vertex it belongs to. Other easily understandable selec-
tors appear in the rules of section 4.

A map is planarif it can be embedded without any self-intersection or overlapping. That
way, self-refinement of any embedded map have to transforms it into a planar map that,
in fact, correctly models a planar subdivision. Thus, the result must satisfy the following
conditions: (¢) all darts of a vertex are embedded on a same point; (i7) distinct vertices are
embedded on distinct points; (7ii) vertices do not overlap any edge; (iv) distinct edges do
not intersect themselves; (iv) vertices are arranged, i.e. consistently embedded w.r.t. ay.



The self-refinement we define is a generic description of all refinement problems. Particular
algorithms can be described by restricting the kinds of used starting sets. Maps are used in
order to carry boolean operations. If a set of segments is used, self-refinement corresponds
to intersections finding algorithms as discussed in [4, 5] or polygones clipping.

4 Rewrite system for the self-refinement of maps

We define the self-refinement of maps through a set of elementary and independent oper-
ations that are nicely described as rules of a conditional modulo rewrite system [8]. In the
rules of table 1, numerators represent a map and denominators represent it after one rewrite
step. Rules can be applied only when the conditions are satisfied. Rules are graphically
depicted in figure 4.
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Table 1: Rewrite system for embedded map self-refinement

Rule R1 deletes a null edge (represented as a loop in figure 4). If a dart  in map M
(z € M) belongs to a null edge (nullee( M, z)), this edge is deleted (dee(M,z)). If two edges
are superposed, rule R2 deletes the second one. Thus, if 2 and z belong to distinct edges
(meqe(M,z,z)) and are 1-embedded on equal segments (eqee( M, z,z)), the edge z belongs
to is deleted from M. Rule R3 performs the incidence cutting. It cuts in two parts an edge
incident to a vertex. If z is 0-embedded on a point p incident to the edge x belongs to, then
this edge is cut at p (obtained by the gem0O(M, z) selector). Rule R4 realizes the intersection
cutting. If 2 and z belong to secant edges, these edges are cut at the intersection point ¢.

The two last rules handle vertices. Rule R5 merges two vertices embedded on equal points,
if possible. Thus, if 2 and z belong to distinct vertices (meqv(M,z,z)) and are 0-embedded
on equal points (eqev(M, x, z)) then their two vertices are merged. This fusion can be done
if the two vertices are mergeable, i.e. if each one is arranged. Finally, rule R6 deletes a
dart from a non-arranged vertex. Thus if z belongs to a non-arranged vertex, it is deleted
from the vertex it belongs to. Dart  and its previous vertex can be remerged later by rule
5, to give a well arranged vertex.

Our rewrite system is convergent [8] as explained in a previous paper [15]. This implies
that, for each map, the rewriting is terminating, what is proved using [16], and leads to a
unique normal form modulo map equality. Therefore, the rewrite system can be seen as a
function of map normalization which projects any map into its self-refinement. Thus, the
use of rewriting techniques allows us to express a complex problem as a set of elementary
transformations. Let us see now how this can be used to derive concrete algorithms.
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Figure 4: Graphical illustration of the rewrite rules

5 Deriving simple concrete algorithms

A naive use of the rewrite system described above is to test, for each dart or couple of darts,
if a rule can be executed. The corresponding algorithm has the following shape:

Repeat
Choose « in M
Try to execute rule 1 and 6 with x
Repeat
Choose z in M
Try to execute rule 2 to 5 with x and z
Until no rule can be executed with =x
Until no rule can be executed

Such an abstract algorithm is not deterministic, because darts are randomly chosen. To
describe a concrete (i.e. real and efficient) algorithm, we have to hold a strategy to choose
darts. We achieve this goal adding to the rewrite system control structures that yield the
dart or couple of darts that is going to be examined. A rewrite rule then describes the
transformations of the map and those of the control structures.

The simplest control structures we can use are lists of darts. In this case, the algorithm
begin with a list L of all darts. A dart is removed from L when no rule can be executed
with it. The algorithm terminates when the list is empty. As we need to choose couples of
darts, we have to handle another list L’ for each chosen dart of L. The chosen darts  and
z are always at the head of the two current lists.

Table 2 shows the rewrite system Ry where the rules of R have been transformed to take
into account the two lists used as control structures. To simplify, only rule 1 and 4 are
shown. The other ones are transformed the same way. The lists are generated by the
head-constructor [z|L] that adds dart & ahead of list L. The destructor d(L,z) deletes
from L. Thus, in rule 1, the darts of the deleted edges are removed from the two lists. In
rule 4, darts 2’, ¢, 2" and t’, that are created when edges are cut, are simply added ahead
of L, because we are not concerned about their order. As obviously these new darts cannot
interfer with z, they are not added to L'.



R - L LM : {z:ﬁrst(L),\ y = ag(M,z)
n d(d(L,z),y), d(d(L"x)y), dee(M,z) nullee(M,z)
L, LM oo [T = first(L) o 2z = first(L’)

Rps: — if

27,y 20| L], L’ cutee(cutee(M,z,i),z,1) secant(M,z,z)

2 . —_ t L7

R,. : L LM lf{z first(L’)

L, d(L,z), M —(Rrav...v Rrs)

L[], M .o [z = first(L)

R;s : if

d(L,z), d(L,x), M ~(Rr1v Rirs)

Table 2: Lists structured rewrite system

Rules 7 and 8 work on control structures when no previous rule can be executed. If z cannot
be used to execute a rule with a given x, its successor in L’ is taken. Thus, when rules 2 to
5 cannot be executed, what we denote =(Rrav ...v Rrs), the head of I’ is removed. Thus,
the system goes on with = and the next dart in /. When I’ is empty, 2 has been checked
against all other darts. Rule 8 then removes dart # from L and initializes the second list.
This way, all couples of darts are examined only once.

An algorithm can be easily derived from Ry. The rewrite rules share the common conditions
@ = first(L) and z = first(L'). To construct our algorithm, we factorize them and handle
directly the control rules Ry7 and Ryg and the two lists. The produced algorithm has the
following structure:

L = list-of-dart(M)
While L # []
z = first(L)
Try to execute rule 1 with x
If rule 1 fails Then
Try to execute rule 6 with z
L' =1
While L' #[]
z = first(L')
Try to execute rule 2 with z and z
If rule 2 fails Then
Try to execute rule 3 to 5 with x and z

L' = d(L, z)
End {while L'}
L =d(L,x)

End {while L}

If we count the number of attemps of rule executions, this simple algorithm has a complexity
in O((n 4 i)?), n being the number of darts and ¢ the number of interacting darts.

The rewrite system Ry we obtain is a formal, precise and complete description of a strategy
to compute maps self-refinement. This strategy is not guessed by a global approach. But,
as the rewrite rules are independant, it is constructed by a step by step study of the different
cases and the changes on the rewrite system are simply made rule by rule.



6 Deriving efficient algorithms

6.1 Use of geometrical properties to choose darts

When we use lists as control structures, we avoid choosing darts and couples of darts more
than once. However all couples of darts are examined. Geometrical properties can be
exploited to avoid examining couples of darts that cannot interact. If D and D’ are the
vertical lines that pass through the vertices of an edge {x,y}, then the darts that can
interact with dart  or y are those whose vertices stand in the plane region lying between

D and D'.

Figure 5: Plane region defined by edge {1,-1}: 2, -2 and -3 are relevant darts

The rewrite system is transformed to use this property. Darts = are examined from left to
right. Darts z are taken in the plane region defined by the edge of x. For this reason, we
use sorted lists of darts or priority queues (implemented with heaps) as control structures.
In fact, rules 1 to 6 do not change, z and z are the first elements of the corresponding
priority queues. The main changes appear in rules 7 and 8.

We define an order <y on darts in a map M. If z and y are 0-embedded on points p and
g in M, then 2 <jp; y means that p is lower than ¢ in the lexicographic order on points’
coordinates. As darts are examined from left to right, we have x <p; z. Therefore, darts
of the second priority queue are examined as long as they stand in the region of z, what
setting y = aop(M, ), we write:

{ZSMy if o<y {ZSMy fr<yy

<
c<ur ifr>yy cqer(Maz) ifx sy y YA s S iy eqer(Maz)

as ¢ <p; 2z a2z <pr x implies that z and z are 0-embedded on equal points. Finally the
third condition is used in rules 7 and 8 to check if z interacts with the current z, as shown
in table 3.

© = first(L) n 2z = first(L’)

R, : % it { ~(Rps.. Rus) with y = ao(M,z)
’ e [z <M YAZ SM Zl]] \ eqev(Mfr?Z)
Y © = first(L) n z = first(L’)
R;s : L if { ~(Rr1v Rrs) with y = ag(M,z)

d(Lz), d(Lz), M T<pr YAy <ar i oegev(Mz,z)

Table 3: Rule 7 and 8 for a rewrite system structured with priority queues

6.2 A plane-sweep algorithm

This simple plane-sweep algorithm is not optimal since all darts of the region defined by
an edge are examined. To avoid this, we sort the edges of this region from bottom to top.



Thus, there are only two relevant darts to examine, namely the dart whose edge is just
below edge {x,y} and the one whose edge is just above. To avoid computing for each z the
sorted set of active edges, this set is maintained by each rewrite rule as a dictionary.

The rewrite system begins with all darts ordered from left to right and put in a priority
queue X and with an empty dictionary A. Dart z is the first element of X and z is chosen
by searching in A the two darts that are just below and above 2. Moreover, as equal vertices
are behind each others in X, the merging can only occur for two consecutive vertices. So,
we add a structure S that only contains the last used vertex.

R. - X, A S M o {:17 = first(X)
T dd(X,x), ao(Mz)), A, S, dee(Mx)  \ nullee(M,z)
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Table 4: Rewrite system with plane sweep strategy

In the rewrite system Rg displayed in table 4, only the relevant rules 1, 4 and 5 are described.
The other ones are similar. The ¢ and d operators insert and delete darts. As before, in
rule 1, the darts of the deleted edge are removed from X. In rule 4, the gsecant(A, M, z)
operator searches within A if either the edge just below or just above z is secant to the edge
x belongs to and returns it or nil if it cannot be found. Then the new darts are inserted in
X. The last changes appear in rule 5. As we said before, the only dart that can be merged
with z is the last examined dart that has been placed in 5. So z is taken in 5.

N z’i

X
I X
Figure 6: The two cases of right dart inactivation

Rules 7, 7/ and 7" are used to maintain X, A and S when the rewrite system sweeps from
left to right, what occurs when rules 1 to 6 cannot be executed. In these three rules dart
x is placed in 5. If z is a left dart, i.e. z is the left vertex of its edge, it is deleted from
X and becomes active as rule 7 inserts it in A. On the other hand, if z is a right dart,



it is removed from X and its edge is removed from A. In the second case, the edges that
are just below and above z have never been checked together and can interact as shown in
figure 6. Thus, if these edges are nil or do not interact there is nothing more to do (rule
77). Else, dart z, whose edge is just below x, is removed from A and reinserted in X to be
examined once more (rule 77).

As before, a classical algorithm can be derived from the rewrite system. We obtain a classical
plane sweep algorithm [1, 4], the complexity of which is in O((n + ¢)In(n)). We think that
more complex algorithms, like those of [5] that adds new edges to make the subdivision’s
faces convexe and have a complexity in O(nln(n) + ¢) thanks to this improvement, can be
rigorously designed that way.

X = set of darts of M sorted by z-coordinates
A=10
S =10
While X # 0
r = first(X)
Try to execute rule 1 and 6 with x
get z from A and x
Try to execute rule 2 to 4 with r and z
get z from S
Try to execute rule 5 with xr and z
remove x from X
S ={z}
If r is a leftdart
Then add x to A
Else {z is a rightdart}
remove ag(M,z) from A
z is the edge below x in A

z' is the edge above z in A
If 2 and 2 interact and z # nil and 2’ # nil
Then remove z from A, insert z in X
Endif
Endif
End {while X}

We have proposed a general mechanism to describe any concrete self-refinement algorithm.
Different control structures lead to different algorithms. A classification of refinement algo-
rithms can thus be done. It is based upon the kind of structures and the kind of research
functions that are used. The interest of this kind of classification is the clear separation
between data structures used to handle maps and data structures used to improve control
and thus complexity of the algorithms.

7 Conclusions

We have defined topological and geometrical operations to construct and handle planar
subdivisions. To achieve this, we have based our approach on the combinatorial map
mathematical model and on rewriting techniques, which led us to express a complex problem
at different levels as a set of elementary and independent transformations. The result
is a complete formal specification and a derivation of efficient algorithms. Finally, we
proove that specification formalism and rewriting expressiveness produce a safe and rigorous
algorithm design, even in computational geometry.

In a first stage, operations on maps and rewrite rules were implemented in Prolog. Using



this logical prototyping, we were able to check quickly, in a practical way, the validity of our
specifications. In a second stage the different algorithms we defined have been implemented
in C, what allowed us a practical study of the different strategies and control structures for
rules application.

Our prospects are to complete the rewrite systems to handle more complex structures, like
2- and 3-generalized maps which enable to describe topological varieties [13], to go about
the problems of 3D boolean operations that involve a lot of difficulties. Another project is
to deal with the numeric approximations. We feel that our approach, which separates on
one hand topology and embedding and on the other hand logic and control, can help to
locate the sensible points were these questions have to be treated.
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