
Rewriting-based derivation of e�cientalgorithms to build planar subdivisions �David Cazier and Jean-Fran�cois DufourdL.S.I.I.T. (URA CNRS 1871)Universit�e Louis Pasteur, D�ep. Informatique7, rue Ren�e Descartes, 67084 Strasbourg CedexE-mail: fcazier, dufourdg@dpt-info.u-strasbg.frAbstract. Algebraic speci�cations allied to rewriting are used more and moreoften in design and logical prototyping of programs. We show how these tech-niques can be applied to a basic problem in computational geometry, namelythe construction of planar subdivisions. We build up a simple, complete andconvergent system of rules to cope with this problem and show how it is trans-formed to describe concrete and e�cient algorithms such as plane-sweep ones.1 IntroductionBoolean (or set) operations in the plane is a crucial task in computational geometry, de-serving a faultless and formal de�nition. Boolean operations amount to the re�nementof superposed subdivisions, and thus, are an extension of line arrangements (see Bentley-Ottmann algorithm [1]). We generalize it to the self-re�nement of embedded combinatorialmaps. These problems have been approached incrementally [2] or more generally [3, 4, 5],the resulting algorithms beeing described by conventional methods.Our works rely on the use of algebraic speci�cations [6, 7] allied to rewriting [8]. Formalobjects are described with abstract data type generators and operations whose behaviour ismodeled by equations. Speci�cations can be made operational in a term rewriting system[8], with a correct orientation of equations and sometimes completion. Then, techniques oflogical prototyping can be used to point out possible design errors. These techniques havebeen ful�lling in computer graphics languages [9, 10], mechanical proof in geometry [11],and geometric modeling [12].The method we propose is more abstract, general and productive than conventional ones forour geometric problem. It allows us to completely and logically de�ne the self-re�nement.Then, by appropriate choices of control structures and strategies, we are able to derive allself-re�nement algorithms, from the most naive until the most e�cient ones.Finally, we know that the question of numeric approximation is essential in this kind ofproblems. But this paper is essentially turned into topological issues and eludes the di�-culties due to real numbers which would need studies in themselves [3].�This research is supported by the GDR de Programmation and the GDR Algorithmique, mod�eleset infographie (French CNRS).

In section 2, we de�ne the self-re�nement of subdivisions. In section 3, we specify mapsin a formal and precise algebraic framework. In section 4 we describe self-re�nement as asimple, convergent rewrite system. In sections 5 and 6, we describe, in terms of rewriting, aformal method to construct robust and e�cient algorithms that result in successive changeson the simplest system. In section 7, we give some conclusions and present future works.2 Self-re�nement of subdivisionsTo compute the union, intersection or di�erence between planar subdivisions, a convenientway is to construct a new subdivision where superposed edges or vertices are merged,intersecting edges are cut and edges are cut at existing incidence points. The result of theboolean operations can then be obtained from this core�nement by selecting the requiredparts. We generalize this idea through the notion of self-re�nement of a set of vertices,edges and faces. This set can contain any number of subdivisions. The self-re�nementconsists in transforming it until it represents a (single) subdivision of the plane. In �gure 1,two subdivisions (a) are superposed to form a set (b), which is self-re�ned (c).
OO(a)

O(b) O(c)Figure 1: Example of self-re�nementIt is usual now to distinguish topology from embedding. Topology de�nes vertices, edgesand faces of objects, as well as theirs incidence relationships. Embedding concerns theposition and shape of these cells. Combinatorial embedded maps supply an easy, preciseand concise description of subdivisions [13]. Interest of topology was shown in [14] thatpresents a good alternative to describe subdivisions and topological operators.3 Formal speci�cation of subdivisionsLet us recall that a combinatorial map is a triplet (B; �0; �1) where B is a �nite set of darts,�0 is an involution on B without �xed points, i.e. a permutation such that �0(�0(x)) = xand �0(x) 6= x for every x, and �1 is a permutation on B. Two darts are said to be linkedwith respect to �0 (resp. �1), or 0-linked (resp. 1-linked), if they belong to the sameorbit with respect to �0 (resp. �1). Darts are usually interpreted as half-edges. Thus, two0-linked darts form a topological edge and an orbit with respect to �1 de�nes a topologicalvertex of the map. Figure 2 (a) presents the drawing conventions.Example 3.1 Figure 2 (b) shows a map with B = f1, : : : , 7, -1, : : : , -7g and, in cyclicnotation, �0 = (-1, 1) (-2, 2) (-3, 3) (-4, 4) (-5, 5) (-6, 6) (-7, 7) and �1 = (1, 2) (-2, 3) (-3,-4, 7) (4, -6) (-7, 6, 5, -1) (-5). Thus �0(1) = -1, �0(-1) = 1, and the orbit <�0>(1) = f1,

A dart :

Two 0-linked darts :

Three 1-linked darts :

2

5
6

-7

7
3

1

-3 -4
4

-5

-6

-1

-2

(a) (b)Figure 2: Conventions and example of combinatorial map-1g de�nes an edge. Similarly, �1(6) = 5, �1(5) = -1, �1(-1) = -7, �1(-7) = 6, <�1>(6) =f5, -1, -7, 6g, and the vertex dart 6 belongs to contains darts -7, 6, 5 and -1. utThe geometry of subdivisions is described by the embedding of maps. Each topologicalpart is associated with a geometrical object of the same dimension. Points are associatedwith vertices (0-embedding) and Jordan arcs with edges (1-embedding). Figure 3 presentsthe graphical conventions for the embedding. In the following, only 0-embeddings areconsidered. Thus, edges are implicitely 1-embedded on line segments.
q

p
x

y
t

z

0

0Figure 3: Graphical convention and example for embeddingsTo formalize the notion of subdivision and to avoid problems due to data structures andprogramming languages, we de�ne maps and operations handling them through an algebraicspeci�cation [6]. Maps are de�ned from four basic functional generators: v; l0; l1; em0 [12].Generator v creates the empty map, l0(M;x; y) and l1(M;x; y) link in map M dart x toy with respect to �0 or �1. Generator em0(M;x; p) embeds dart x on point p. Note thatthe order these operations are applied is indi�erent. A map is described by �rst orderequivalent terms where applications of l0, l1 and em0 are the same but permutated. Thus,the map of �gure 3 can be written l1(em0(l1(l1(l0(em0(v; x; q); x; y); y; z); z; t); t; p); t; y).A set of functional selectors and constructors on maps is then de�ned through a �rst orderequational theory. For instance, we build topological selectors to compare in map M thevertices or edges x and y belong to: eqv(M;x; y) and eqe(M;x; y). We also de�ne geometri-cal selectors to compare embeddedings of vertices or edges: eqev(M;x; y) and eqee(M;x; y).Among the constructors that modify the topology and the geometry of a map, we de�necutee(M;x; p) that cuts at point p the edge x belongs to and merge(M;x; y) that mergestwo distinct vertices reordering the 1-links of these two vertices. Finally, the destructordv(M;x) deletes dart x from the vertex it belongs to. Other easily understandable selec-tors appear in the rules of section 4.A map is planar if it can be embedded without any self-intersection or overlapping. Thatway, self-re�nement of any embedded map have to transforms it into a planar map that,in fact, correctly models a planar subdivision. Thus, the result must satisfy the followingconditions: (i) all darts of a vertex are embedded on a same point; (ii) distinct vertices areembedded on distinct points; (iii) vertices do not overlap any edge; (iv) distinct edges donot intersect themselves; (iv) vertices are arranged, i.e. consistently embedded w.r.t. �1.

The self-re�nement we de�ne is a generic description of all re�nement problems. Particularalgorithms can be described by restricting the kinds of used starting sets. Maps are used inorder to carry boolean operations. If a set of segments is used, self-re�nement correspondsto intersections �nding algorithms as discussed in [4, 5] or polygones clipping.4 Rewrite system for the self-re�nement of mapsWe de�ne the self-re�nement of maps through a set of elementary and independent oper-ations that are nicely described as rules of a conditional modulo rewrite system [8]. In therules of table 1, numerators represent a map and denominators represent it after one rewritestep. Rules can be applied only when the conditions are satis�ed. Rules are graphicallydepicted in �gure 4.R1 : Mdee(M,x) if �x 2 Mnullee(M,x) R4 : Mcutee(cutee(M,x,i),z,i) if �x 2 M ^ z 2 Msecant(M,x,z)with i = intersection(x,z)R2 : Mdee(M,z) if 8<:x 2 M ^ z 2 M: eqe(M,x,z)eqee(M,x,z) R5 : Mmerge(M,x,z) if 8>><>>:x 2 M ^ z 2 M: eqv(M,x,z)eqev(M,x,z)mergeable(M,x,z)R3 : Mcutee(M,x,p) if 8<:x 2 M ^ z 2 M: nullee(M,z)incident(M,z,x) R6 : Mdv(M,x) if �x 2 M: arranged(M,x)Table 1: Rewrite system for embedded map self-re�nementRule R1 deletes a null edge (represented as a loop in �gure 4). If a dart x in map M(x 2M) belongs to a null edge (nullee(M;x)), this edge is deleted (dee(M;x)). If two edgesare superposed, rule R2 deletes the second one. Thus, if x and z belong to distinct edges(:eqe(M;x; z)) and are 1-embedded on equal segments (eqee(M;x; z)), the edge z belongsto is deleted from M . Rule R3 performs the incidence cutting. It cuts in two parts an edgeincident to a vertex. If z is 0-embedded on a point p incident to the edge x belongs to, thenthis edge is cut at p (obtained by the gem0(M; z) selector). Rule R4 realizes the intersectioncutting. If x and z belong to secant edges, these edges are cut at the intersection point i.The two last rules handle vertices. Rule R5 merges two vertices embedded on equal points,if possible. Thus, if x and z belong to distinct vertices (:eqv(M;x; z)) and are 0-embeddedon equal points (eqev(M;x; z)) then their two vertices are merged. This fusion can be doneif the two vertices are mergeable, i.e. if each one is arranged. Finally, rule R6 deletes adart from a non-arranged vertex. Thus if x belongs to a non-arranged vertex, it is deletedfrom the vertex it belongs to. Dart x and its previous vertex can be remerged later by rule5, to give a well arranged vertex.Our rewrite system is convergent [8] as explained in a previous paper [15]. This impliesthat, for each map, the rewriting is terminating, what is proved using [16], and leads to aunique normal form modulo map equality. Therefore, the rewrite system can be seen as afunction of map normalization which projects any map into its self-re�nement. Thus, theuse of rewriting techniques allows us to express a complex problem as a set of elementarytransformations. Let us see now how this can be used to derive concrete algorithms.

R3
y

x

z

y’x’
y

x

p p
z

x

R6

x

0

0

0
0

R1yx

p q x

yz

t

R4

i

x’

y’z’

t’
tx

yz

0

0 0

0
0 0

R5

x

z z

x

R2

y
x

t
z

y
x Figure 4: Graphical illustration of the rewrite rules5 Deriving simple concrete algorithmsA na��ve use of the rewrite system described above is to test, for each dart or couple of darts,if a rule can be executed. The corresponding algorithm has the following shape:RepeatChoose x in MTry to execute rule 1 and 6 with xRepeatChoose z in MTry to execute rule 2 to 5 with x and zUntil no rule can be executed with xUntil no rule can be executedSuch an abstract algorithm is not deterministic, because darts are randomly chosen. Todescribe a concrete (i.e. real and e�cient) algorithm, we have to hold a strategy to choosedarts. We achieve this goal adding to the rewrite system control structures that yield thedart or couple of darts that is going to be examined. A rewrite rule then describes thetransformations of the map and those of the control structures.The simplest control structures we can use are lists of darts. In this case, the algorithmbegin with a list L of all darts. A dart is removed from L when no rule can be executedwith it. The algorithm terminates when the list is empty. As we need to choose couples ofdarts, we have to handle another list L0 for each chosen dart of L. The chosen darts x andz are always at the head of the two current lists.Table 2 shows the rewrite system RL where the rules of R have been transformed to takeinto account the two lists used as control structures. To simplify, only rule 1 and 4 areshown. The other ones are transformed the same way. The lists are generated by thehead-constructor [xjL] that adds dart x ahead of list L. The destructor d(L; x) deletes xfrom L. Thus, in rule 1, the darts of the deleted edges are removed from the two lists. Inrule 4, darts x0; y0; z0 and t0, that are created when edges are cut, are simply added aheadof L, because we are not concerned about their order. As obviously these new darts cannotinterfer with x, they are not added to L0.

RL1 : L, L', Md(d(L,x),y), d(d(L',x),y), dee(M,x) if �x = �rst(L) ^ y = �0(M,x)nullee(M,x)RL4 : L, L', M[x',y',z',t' jL], L', cutee(cutee(M,x,i),z,i) if �x = �rst(L) ^ z = �rst(L')secant(M,x,z)RL7 : L, L', ML, d(L',z), M if �z = �rst(L'):(RL2 _ : : :_RL5)RL8 : L, [], Md(L,x), d(L,x), M if �x = �rst(L):(RL1 _RL6)Table 2: Lists structured rewrite systemRules 7 and 8 work on control structures when no previous rule can be executed. If z cannotbe used to execute a rule with a given x, its successor in L0 is taken. Thus, when rules 2 to5 cannot be executed, what we denote :(RL2 _ : : :_RL5), the head of L0 is removed. Thus,the system goes on with x and the next dart in L0. When L0 is empty, x has been checkedagainst all other darts. Rule 8 then removes dart x from L and initializes the second list.This way, all couples of darts are examined only once.An algorithm can be easily derived fromRL. The rewrite rules share the common conditionsx = first(L) and z = first(L0). To construct our algorithm, we factorize them and handledirectly the control rules RL7 and RL8 and the two lists. The produced algorithm has thefollowing structure:L = list-of-dart(M)While L 6= []x = first(L)Try to execute rule 1 with xIf rule 1 fails ThenTry to execute rule 6 with xL0 = LWhile L0 6= []z = first(L0)Try to execute rule 2 with x and zIf rule 2 fails ThenTry to execute rule 3 to 5 with x and zL0 = d(L0; z)End fwhile L0gL = d(L; x)End fwhile LgIf we count the number of attemps of rule executions, this simple algorithm has a complexityin O((n+ i)2), n being the number of darts and i the number of interacting darts.The rewrite system RL we obtain is a formal, precise and complete description of a strategyto compute maps self-re�nement. This strategy is not guessed by a global approach. But,as the rewrite rules are independant, it is constructed by a step by step study of the di�erentcases and the changes on the rewrite system are simply made rule by rule.

6 Deriving e�cient algorithms6.1 Use of geometrical properties to choose dartsWhen we use lists as control structures, we avoid choosing darts and couples of darts morethan once. However all couples of darts are examined. Geometrical properties can beexploited to avoid examining couples of darts that cannot interact. If D and D0 are thevertical lines that pass through the vertices of an edge fx; yg, then the darts that caninteract with dart x or y are those whose vertices stand in the plane region lying betweenD and D0.
1

-1
D’D

4
-4

5

-5
-3 3

2

-2Figure 5: Plane region de�ned by edge f1,-1g: 2, -2 and -3 are relevant dartsThe rewrite system is transformed to use this property. Darts x are examined from left toright. Darts z are taken in the plane region de�ned by the edge of x. For this reason, weuse sorted lists of darts or priority queues (implemented with heaps) as control structures.In fact, rules 1 to 6 do not change, x and z are the �rst elements of the correspondingpriority queues. The main changes appear in rules 7 and 8.We de�ne an order <M on darts in a map M . If x and y are 0-embedded on points p andq in M , then x <M y means that p is lower than q in the lexicographic order on points'coordinates. As darts are examined from left to right, we have x �M z. Therefore, dartsof the second priority queue are examined as long as they stand in the region of x, whatsetting y = �0(M;x), we write:� z �M y if x <M yz �M x if x �M y) � z �M y if x <M yeqev(M,x,z) if x �M y) [x <M y ^ z �M y] _ eqev(M,x,z)as x �M z ^ z �M x implies that x and z are 0-embedded on equal points. Finally thethird condition is used in rules 7 and 8 to check if z interacts with the current x, as shownin table 3.RL7 : L, L', ML, d(L',z), M if 8<:x = �rst(L) ^ z = �rst(L'):(RL2 : : :RL5)[x <M y ^ z �M y] _ eqev(M,x,z) with y = �0(M,x)RL8 : L, L', Md(L,x), d(L,x), M if 8<:x = �rst(L) ^ z = �rst(L'):(RL1 _ RL6)x <M y ^ y <M z ^ : eqev(M,x,z) with y = �0(M,x)Table 3: Rule 7 and 8 for a rewrite system structured with priority queues6.2 A plane-sweep algorithmThis simple plane-sweep algorithm is not optimal since all darts of the region de�ned byan edge are examined. To avoid this, we sort the edges of this region from bottom to top.

Thus, there are only two relevant darts to examine, namely the dart whose edge is justbelow edge fx; yg and the one whose edge is just above. To avoid computing for each x thesorted set of active edges, this set is maintained by each rewrite rule as a dictionary.The rewrite system begins with all darts ordered from left to right and put in a priorityqueue X and with an empty dictionary A. Dart x is the �rst element of X and z is chosenby searching in A the two darts that are just below and above x. Moreover, as equal verticesare behind each others in X , the merging can only occur for two consecutive vertices. So,we add a structure S that only contains the last used vertex.RS1 : X, A, S, Md(d(X,x), �0(M,x)), A, S, dee(M,x) if �x = �rst(X)nullee(M,x)RS4 : X, A, S, Mi(i(i(i(X,x'),y'),z'),t'), A, S, cutee(cutee(M,x,i),z,i) if �x = �rst(X)z = gsecant(A,M,x) 6= nilRS5 : X, A, fzg, MX, A, S, merge(M,x,z) if �x = �rst(X): eqv(M,x,z) ^ eqev(M,x,z) ^ mergeable(M,x,z)RS7 : X, A, S, Md(X,x), i(A,x), fxg, M if �x = �rst(X) ^ leftdart(M,x): (R2 _ : : :_ R5)RS70 : X, A, S, Mi(d(X,x),z), d(d(A,�0(M,x)),z), fxg, M if 8<:x = �rst(X) ^ rightdart(M,x) ^ : (R2 : : :R5)z = gbelow(A,M,x) ^ z' = gabove(A,M,x)interact(M,z,z')RS700 : X, A, S, Md(X,x), d(A,�0(M,x)), fxg, M if 8<:x = �rst(X) ^ rightdart(M,x) ^ : (R2 : : :R5)z = gbelow(A,M,x) ^ z' = gabove(A,M,x): interact(M,z,z') _ z = nil _ z' = nilTable 4: Rewrite system with plane sweep strategyIn the rewrite systemRS displayed in table 4, only the relevant rules 1, 4 and 5 are described.The other ones are similar. The i and d operators insert and delete darts. As before, inrule 1, the darts of the deleted edge are removed from X . In rule 4, the gsecant(A;M; x)operator searches within A if either the edge just below or just above x is secant to the edgex belongs to and returns it or nil if it cannot be found. Then the new darts are inserted inX . The last changes appear in rule 5. As we said before, the only dart that can be mergedwith x is the last examined dart that has been placed in S. So z is taken in S.
z’

z

x

z

x

z’Figure 6: The two cases of right dart inactivationRules 7, 70 and 700 are used to maintain X , A and S when the rewrite system sweeps fromleft to right, what occurs when rules 1 to 6 cannot be executed. In these three rules dartx is placed in S. If x is a left dart, i.e. x is the left vertex of its edge, it is deleted fromX and becomes active as rule 7 inserts it in A. On the other hand, if x is a right dart,

it is removed from X and its edge is removed from A. In the second case, the edges thatare just below and above x have never been checked together and can interact as shown in�gure 6. Thus, if these edges are nil or do not interact there is nothing more to do (rule7"). Else, dart z, whose edge is just below x, is removed from A and reinserted in X to beexamined once more (rule 7').As before, a classical algorithm can be derived from the rewrite system. We obtain a classicalplane sweep algorithm [1, 4], the complexity of which is in O((n+ i) ln(n)). We think thatmore complex algorithms, like those of [5] that adds new edges to make the subdivision'sfaces convexe and have a complexity in O(n ln(n) + i) thanks to this improvement, can berigorously designed that way.X = set of darts of M sorted by x-coordinatesA = ;S = ;While X 6= ;x = first(X)Try to execute rule 1 and 6 with xget z from A and xTry to execute rule 2 to 4 with x and zget z from STry to execute rule 5 with x and zremove x from XS = fxgIf x is a leftdartThen add x to AElse fx is a rightdartgremove �0(M;x) from Az is the edge below x in Az0 is the edge above x in AIf z and z0 interact and z 6= nil and z0 6= nilThen remove z from A, insert z in XEndifEndifEnd fwhile XgWe have proposed a general mechanism to describe any concrete self-re�nement algorithm.Di�erent control structures lead to di�erent algorithms. A classi�cation of re�nement algo-rithms can thus be done. It is based upon the kind of structures and the kind of researchfunctions that are used. The interest of this kind of classi�cation is the clear separationbetween data structures used to handle maps and data structures used to improve controland thus complexity of the algorithms.7 ConclusionsWe have de�ned topological and geometrical operations to construct and handle planarsubdivisions. To achieve this, we have based our approach on the combinatorial mapmathematical model and on rewriting techniques, which led us to express a complex problemat di�erent levels as a set of elementary and independent transformations. The resultis a complete formal speci�cation and a derivation of e�cient algorithms. Finally, weproove that speci�cation formalism and rewriting expressiveness produce a safe and rigorousalgorithm design, even in computational geometry.In a �rst stage, operations on maps and rewrite rules were implemented in Prolog. Using

this logical prototyping, we were able to check quickly, in a practical way, the validity of ourspeci�cations. In a second stage the di�erent algorithms we de�ned have been implementedin C, what allowed us a practical study of the di�erent strategies and control structures forrules application.Our prospects are to complete the rewrite systems to handle more complex structures, like2- and 3-generalized maps which enable to describe topological varieties [13], to go aboutthe problems of 3D boolean operations that involve a lot of di�culties. Another project isto deal with the numeric approximations. We feel that our approach, which separates onone hand topology and embedding and on the other hand logic and control, can help tolocate the sensible points were these questions have to be treated.References[1] J.L. Bentley and T. Ottmann. Algorithms for reporting and counting geometric intersections.IEEE Trans. Comput., 28:643{647, 1979.[2] J.F. Dufourd, C. Gross, and J.C. Spehner. A digitization algorithm for the entry of planarmaps. In Proc. Computer Graphics International Conf., pages 649{661, Leeds, U.K., 1989.Springer-Verlag.[3] M. Gangnet, J.C. Herv�e, T. Pudet, and J.M. van Thong. Incremental computation of planarmaps. In Proc. of ACM Siggraph Conf., Boston, Computer Graphics, volume 23, pages 345{354,July 1989.[4] J. Nievergelt and F.P. Preparata. Plane-sweep algorithms for intersecting geometric �gures.Com. of ACM, 25(10):739{747, 1982.[5] B. Chazelle and H. Edelsbrunner. An optimal algorithm for intersecting line segments in theplane. Journal of ACM, 39(1):1{54, 1992.[6] H. Ehrig and B. Mahr. Fundamentals of algebraic speci�cation 1. Equations and initial seman-tics, volume 6 of EATCS Monograph on Theoretical Computer Science. Springer, 1985.[7] M.Wirsing. Algebraic speci�cations. In Formal models and semantics, Handbook of TheoreticalComputer Science, chapter 13, pages 675{788. Elsevier, 1990.[8] N. Dershowitz and J.P. Jouannaud. Rewrite systems. In Formal models and semantics, Hand-book of Theoretical Computer Science, chapter 6, pages 243{320. Elsevier, 1990.[9] W.R. Mallgren. Formal speci�cation of interactive graphic programming languages. ACM Dist.Dissertation. MIT Press, USA, 1982.[10] D.A. Duce, E.V. Fielding, and L.S. Marshall. Formal speci�cation of a small example basedon GKS. ACM Trans. on Graphics, 7(3):180{197, 1988.[11] B. Br�uderlin. Using geometric rewrite rules for solving geometric problems symbolically. The-oretical Computer Science, 116:291{303, 1993.[12] Y. Bertrand and J.F. Dufourd. Algebraic speci�cation of a 3D-modeler based on hypermaps.CVGIP : Graphical Models and Image Processing, 56(1):29{60, 1994.[13] P. Lienhardt. Topological models for boundary representation : a comparison with n-dimensional generalized maps. Computer Aided Design, 23(1):59{82, 1991.[14] L. Guibas and J. Stol�. Primitives for the manipulation of general subdivisions and the com-putation of Vorono�� diagrams. ACM Trans. on Graphics, 4(2):74{123, April 1985.[15] D. Cazier and J.F. Dufourd. A rewrite system to build planar subdivisions. In Proc. CanadianConf. on Computational Geometry, pages 235{240, Qu�ebec, 1995.[16] E. Bevers and J. Lewi. Proving termination of (conditional) rewrite systems. A semanticapproach. Acta Informatica, 30:537{568, 1993.

