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Abstract

In a previous work [1], the authors introduced the Non-Local Estimators (NLE),
a wide class of polygonal length estimators including the sparse estimators and
a part of the DSS ones. NLE are studied here under concavity assumption and
it is shown that concavity almost doubles the multigrid converge rate w.r.t. the
general case. Moreover, an example is given that proves that the obtained con-
vergence rate is optimal. Besides, the notion of biconcavity relative to a NLE is
proposed to describe the case where the digital polygon is also concave. Thanks
to a counterexample, it is shown that concavity does not imply biconcavity.
Then, an improved error bound is computed under the biconcavity assumption.

Keywords: digital geometry, length estimation, multigrid convergence

1. Introduction1

This article is the second of a pair devoted to the study of the multigrid2

convergence of length estimators. For short, the considered length estimators3

are based on a polygonal approximation of the digitized function whose edge4

discrete sizes tend in mean toward infinity, as the grid step tends toward zero.5

Indeed, it is known that length estimators using fixed size edges, even with suit-6

able weights, do not converge in the general case and it is likely that this result7

could be extend to estimators using edges of bounded sizes, weighted or not.8

In the first article [1], we introduced the notion of non local estimator (NLE),9

a polygonal estimator using edges whose mean discrete size tend toward infin-10

ity and, among the NLE, we considered in particular the M-sparse estimators11

(MSE) whose true edge lengths (taking into account the grid step) tend toward12

zero in mean. We proved that a MSE, or a NLE close to a MSE, has the multi-13

grid convergence property. In the present article, we focus on the improvement14

brought by the concavity assumption on the multigrid convergence speed for15

the NLE. Indeed, we know from a previous work [2], that convexity doubles16

the convergence rate of the sparse estimators the most regular MSE. This is17

not exactly the case in the more general setting of the NLE but nevertheless18
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we show that the convergence is significantly accelerated by the concavity for19

a wide class of continuous functions that satisfy a Lipschitz condition on the20

left and the right derivative. Moreover, we introduce the notion of biconcavity21

which expresses that both the continuous curve and the polygonal line used22

for the length estimation are concave. This notion was implicitly used in [3,23

theorem 13] to prove the multi-grid convergence of the maximal digital straight24

segment estimator (MDSSE). Under the biconcavity assumption, we establish25

a result that fit our observations on the convergence speed of the MDSSE for26

the natural logarithm function.27

The paper is organized as follows. In Section 2, some necessary notations28

and conventions are recalled, as are the NLE convergence properties in the29

general case. Two theorems on the multigrid convergence rate of NLE and30

MSE for concave continuous functions are given in Section 3. An experiment31

exemplifies the results. Section 4 is devoted to the biconcavity. A sufficient32

condition for this property is presented and we state our third theorem on the33

convergence rate. Section 5 concludes the article. The reader will also find34

in Appendix A an example of a concave function for which our best upper35

bound for the convergence rate is reached, indicating that this bound cannot36

be improved in the general case. Moreover an example of a concave function37

whose digitization family has convex pairs of arbitrary long consecutive chords38

for an infinity of grid steps is exhibited. Eventually, Appendix B gathers the39

technical lemmas used in Sections 3 and 4.40

2. Background and previous results41

In this section, we give our notations and we recall the notion of Non-Local42

Estimators (NLE) introduced in [1].43

2.1. Digitization models44

This paper is focused on the digitization of function graphs. So, let us con-45

sider a continuous function g : [a, b] → R (a < b), its graph C(g) = {(x, g(x)) |46

x ∈ [a, b]} and a positive real number r, the resolution. We assume to have47

an orthogonal grid in the Euclidean space R2 whose set of grid points is hZ2
48

where h = 1/r is the grid spacing. We use the following notations: b·c is49

the floor function and d·e is the ceil function. For i ≤ j two integers, [[i, j]]50

stands for [i, j]∩Z. The h-digitization of the function g is the discrete function51

D(g, h) : [[da/he , bb/hc]] → Z defined by D(g, h)(k) = bg(kh)/hc. Provided the52

slope of g is limited by 1 in modulus, the graph of D(g, h) is an 8-connected53

digital curve. Nevertheless, in this article, we make no assumption on the slope54

of the function g.55

2.2. Non-local length estimators (NLE)56

For any continuous function f : [a, b] → R, L(f) denotes the length of the
graph C(f) according to Jordan’s definition of length:

L(f) = sup
a=x0<x1<···<xn=b

n∑
i=1

√
(xi − xi−1)2 + (f(xi)− f(xi−1))2,
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where the supremum is taken over all the possible partitions of [a, b] and n57

is unbounded. The reader can find in [1] a description of the classical length58

estimators.59

Let us now recall the key notions in the definition of the NLEs.60

• A pattern function is a function that maps a discrete curve Γ and a grid61

spacing h to a partition of the domain of Γ.62

Let A and B be two pattern functions. We say that A is finer than B, we63

write A ≺ B, if for any discrete curve Γ and any grid step h, the partition64

A(G, h) is finer than the partition B(G, h).65

• Let α ∈ R = [−∞,+∞] be any non-zero real number. When σ is a66

partition of some interval I ⊂ R, the α-th power mean of the σ subinterval67

length sequence (xi)
n
i=0 is defined for α ∈ R by68

Mα((xi)
n
i=0) =

(
1

n

n∑
i=0

xi
α

) 1
α

,

and M+∞((xi)
n
i=0) = max((xi)

n
i=0) , M−∞((xi)

n
i=0) = min((xi)

n
i=0) in the69

other cases.70

An α-pattern function A on a set of rectifiable functions C is a pattern71

function such that, for any function g ∈ C, lim
h→0

Mα(A(D(g, h), h)) = +∞.72

• An (α, β)-pattern function (β ∈ R) A on C is an α-pattern function such73

that, for any function g ∈ C, lim
h→0

Mβ(A(D(g, h), h))× h = 0.74

• An α-pattern function, resp. (α, β)-pattern function, is an α-pattern func-75

tion, resp. (α, β)-pattern function, on the set of all rectifiable functions.76

The non-local length estimator associated to an α-pattern function A maps77

a pair (G, h), consisting of a discrete curve and a grid step, to the length78

LNL(A, G, h) of an h-homothetic copy of the polyline whose vertices are the79

points of G with abscissas in A(G, h). Given a rectifiable function g, by abuse80

of notation, we write LNL(A, g, h) instead of LNL(A,D(g, h), h) and also A(g, h)81

instead of A(D(g, h), h). Let H : (0,+∞) → N?. A sparse estimator with step82

H is a non-local length estimator whose pattern function A only depends on83

the grid step h and such that the partition A(G, h) has a constant step H(h)84

but its last step which is not greater than H(h).85

The main result without concavity hypothesis is that NLE are convergent86

for Lipschitz functions. We recall below (Theorem 1) a result, proved in [1], that87

gives a bound on the error at the grid spacing h for Lipschitz functions whose88

derivatives are k-Lipschitz on any interval included in their domains (k > 0).89

Before stating Th. 1, we need first to complete the introduction to our notations.90
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Notations. We present some notations used throughout the remainder of the91

article. The first ones concern Euclidean objects. Thereby, they do not depend92

upon the grid spacing. The others are related to the grid spacing h and should93

be indexed by h. Nevertheless, as we never have to work with two different grid94

spacings, the h index is omitted to lighten the notations.95

I = [a, b] is an interval of R with a non-empty interior and g : I → R is a96

Lipschitz function whose derivative is denoted g′ (since g is Lipschitz-continuous,97

it is absolutely continuous and thus, g is differentiable almost everywhere [4, p.98

145-148]). The function ϕ : R → R is defined by ϕ(x) =
√

1 + x2. Thus, one99

has L(g) =
∫
[a,b]

ϕ ◦ g′(t) dt.100

Given some grid spacing h > 0, A, resp. B, is the smallest, resp. largest,101

integer such that Ah ∈ I, resp. Bh ∈ I. The functions gl, gc, gr are resp.102

the restrictions of the function g to the intervals [a,Ah], [Ah,Bh], [Bh, b]. For103

any patern function A, we write MAα , instead of Mα(A(g, h)) when there is104

no ambiguity. The number of subintervals in the partition A(g, h) is denoted105

NA, or just N when possible and the integers defining the partition A(g, h)106

are A = a0 < a1 < · · · < aN = B ( A = b0 < b1 < · · · < bN = B for the107

partition B(g, h)). In particular, for a sparse estimator with step H and a real108

α, the mean Mα(A(G, h)) lies between H(h) and H(h)(1 − 1/N)1/α. Finally,109

two piecewise affine functions, gAc and
⌊
gAc
⌋
, are defined. They interpolate the110

continuous function gc and its digitization (actually, the h-homothetic copy of111

the digital curve D(g, h)) according to the pattern function A. The graph of112

gAc , resp
⌊
gAc
⌋
, is the polyline linking the points

(
aih, g(aih)

)N
i=0

which are in113

C(g), resp. the grid points
(
aih, b g(aih)h ch

)N
i=0

which are in hZ2.114

We are now able to state Th. 1 (see [1]).115

Theorem 1. Let g : [a, b]→ R be a k1-Lipschitz function and A be a 1-pattern116

function. If there exist a (1, β)-pattern function B, β ∈ [1,+∞], and a real ω117

such that, for any grid spacing h, ‖
⌊
gAc
⌋
−
⌊
gBc
⌋
‖∞ ≤ ωh, then118

• if β = +∞, the non-local estimation LNL(g,A, h) converges toward the119

length of the curve C(g) as h tends to 0;120

• if g′ is k2-Lipschitz on each interval included in its domain, we have

L(g)− LNL(A, g, h) ≤
Sh+ T hMB1 (1 + (CB)2) + UHB + V

(
1
MA1

+ 1
MB1

)
, (1)

where S = 2ϕ(k1), T = k2(b− a)/2, U = ϕ(k1)− 1, V = (1 + 2ω)ϕ′
(
k1 +121

1/MA−1

)
(b− a) and HB is the measure of the union of the B(g, h) subin-122

tervals on which g is not differentiable.123

Furthermore, if B(g, h) ⊆ A(g, h), the term 1/MA1 + 1/M1
B in the right hand124

side of Equation (1) can be replaced by 1/MB1 .125

Apart from the first one, the upper bounds that appear in the right hand side126

of Equation (1) can be improved in the case of concave functions.127
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3. Concave functions length estimation128

In this section, we assume that the function g is concave on [a, b]. This129

implies in particular that g admits left and right derivatives, noted d`g and130

drg, at any point of (a, b) and is Lipschitz continuous on any closed subinterval131

of (a, b). We assume moreover that the one-sided derivatives of g are defined132

and Lipschitz1 on [a, b]. In particular, g is Lipschitz on [a, b]. Under this new133

hypothesis, we can improve the bound on the convergence speed of the estimated134

length toward the true length of the curve C(g).135

3.1. General case136

Let A be a pattern function. The functions gl, gr, gAc and
⌊
gAc
⌋
are those137

defined in Paragraph Notations of Section 2.2. Firstly, we recall a bound on the138

errors due to the loss of the true left and right extremities of the curve C(g). Its139

proof can be found in [1].140

Proposition 2 (Curve extremity error). For any k-Lipschitz function g,
we have

L(gl) + L(gr) ≤ 2ϕ(k)h.

Propositions 3 and 4 are improvements of Propositions 3 and 4 of [1] for141

concave curves. The first one gives an upper bound on the discretization error.142

Proposition 3 (Error between curve and curve chords). Let g be a con-143

cave function whose one-sided derivatives are defined and k-Lipschitz on [a, b]144

(k > 0). Then145

L(gc)− L(gAc ) ≤
N∑
i=1

k2

4
(ai − ai−1)3h3 ≤ k2(b− a)M3

3

4M1
h2. (2)

Proof. Note that the proof appeals to a technical result, Lemma 12, which is
stated, and proved, in Appendix B.
Let us consider the partition σ = h · A(g, h) of the interval [Ah,Bh] and the
piecewise affine function gA+

c : [Ah,Bh]→ R defined by

gA+
c (x) = min

(
g(xi−1) + drg(xi−1)(x− xi−1), g(xi)− d`g(xi)(xi − x)

)
,

where [xi−1, xi] is the subinterval of the partition σ that contains x. Note that146

gA+
c (xi), 0 ≤ i ≤ N , is uniquely defined and is equal to g(xi).147

Since g is concave, we have on the one hand drg(xi−1) ≤ g′ ≤ d`g(xi) on any148

subinterval [xi−1, xi] of σ and, on the other hand, gAc ≤ gc ≤ gA+
c on [Ah,Bh].149

Therefore, we can apply Lemma 11 and Lemma 12 on each subinterval of the150

partition σ. Together with the hypothesis on the derivatives of g, this leads to151

the following inequalities.152

1Since g is concave on [a, b], it is equivalent to assume that d`g — or drg — is k-Lipschitz
for some k > 0, or that drg(x)− d`g(y) ≤ k(y − x) for any x, y such that a ≤ x < y ≤ b.
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L(gc)− L(gAc ) ≤ L(gA+
c )− L(gAc ) ≤

N∑
i=1

(xi − xi−1)
( drg(xi−1)− d`g(xi))

2

4

≤
N∑
i=1

k2

4
(xi − xi−1)3 ≤ k2h3N

4
M3

3 ≤ k2h2(b− a)

4

M3
3

M1
.

Hence, the result holds. �153

Inequality (2) has to be compared to the following one obtained in [1, Propo-
sition 3] for a function g differentiable with a derivative k Lipschitz continuous:

L(gc)− L(gAc ) ≤ k(b− a)

2
hM2 .

When the partition A(g, h) is roughly even, M3
3/M1 ≈ M2

2 and the upper154

bound is squared under the concavity assumption. In the worst case, we also155

note that156

M3
3

M1
=

∑
(ai+1 − ai)3∑
(ai+1 − ai)

≤
∑

(ai+1 − ai)M+∞
2∑

(ai+1 − ai)
≤ (M+∞)2 . (3)

Example 1. The result given by Proposition 3 is illustrated on Fig. 1 with
the natural logarithm on the interval [1, 2], the sparse estimators with steps
H(h) = h−γ where γ ∈ { 14 , 13 , 12 , 23} and the MDSS estimator. The grid steps
used for the plot are h = (2/3)n, n ∈ [1, 40]. Then, for any γ, Mα ≈ h−γ

(precisely, h−γ(1−h)α ≤Mα ≤ h−γ) and Eq. (2) gives the following expression
for the discretization error

L(gc)− L(gAc ) = 1
4h

2(1−γ) .

In Figure 1, the continuous lines stand for the error computed from the formula
above, where the constant has been estimated from the data. We see that Eq. (2)
gives the right convergence rate though the given constant (1/4) is bigger than
the empirical ones (between 0.1 and 0.001). This was expected mainly because
Eq. (2) involves an upper bound for the second derivative while this derivative
is not constant. Regarding the MDSS estimator, we just know from [5] that

Ω(h−1/3) ≤M1 ≤ O(h−1/3 log(h−1)) .

So, we plotted two lines ∝ h4/3 and ∝ h4/3 log2(h−1) that fit the data well.157

The following proposition gives an upper bound on the quantization error.158

It appeals to two pattern functions. Indeed, the pattern functions have been159

introduced in [1] to report on the behavior of two families of length estimators:160

• sparse estimators [2] that use domain partitions A(G, h) that only depends161

upon the parameter h,162
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Figure 1:
∣∣L(gc)− L(gAc )

∣∣ (see text).

• MDSS (Maximum Digital Straight Segments) that use domain partitions163

that only depend upon the discrete function G164

(local estimators domain partitions depend neither upon h nor upon G and fail165

to converge). Since MDSS domain partitions depend on the function graph, one166

cannot assert anything about the ’true length’ of the subsegments of a MDSS so167

the underlying pattern function of a MDSS is not in general an (α, β)-pattern168

function. Nevertheless, since by definition a MDSS is close to the curve, the169

resulting digital curve segmentation is not far from the segmentation produced170

by some (α, β)-pattern function. This is the reason why in the next proposition171

and in the proof of Theorem 6, we appeal to two pattern functions that are close172

to each other.173

Proposition 4 (Error between curve chords and grid chords). Let g be174

a concave function and A and B be two pattern functions such that B ≺ A and175

gBc −
⌊
gAc
⌋
≤ ωh for some ω > 0. Then176

∣∣L(gBc )− L(
⌊
gAc
⌋
)
∣∣ ≤ U NB∑

i=1

h

bi − bi−1
+ V h ≤ U b− a

MB
−1M

B
1

+ V h , (4)

where U = ω2 and V = max(g′(a), g′(a)− 2g′(b)).177

Proof. From the hypotheses, we have⌊
gAc
⌋
≤ gBc ≤

⌊
gAc
⌋

+ ωh .
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Let s1 and s2 be the slopes of the first and last segments of gBc . Since g is
concave, g′(a) ≥ s1 ≥ s2 ≥ g′(b). From Lemma 14, applied with f1 =

⌊
gAc
⌋
,

f2 = gBc , σ = hB(g, h), p = NB and e = ωh, we derive

∣∣L(gBc )− L(
⌊
gAc
⌋
)
∣∣ ≤ U NB∑

i=1

h

bi − bi−1
+ V h for max(s1, s1 − 2s2) ≤ V

≤ U N
Bh

MB−1
+ V h ≤ U b− a

MB−1M
B
1

+ V h .

�178

Example 2. The result given by Proposition 4 is illustrated on Fig. 2 with the179

same function and patterns as in Example 1, taking each time A = B (and180

ω = 1). With the sparse estimators, we have, for any γ and α, Mα = Θ(h−γ).181

For the MDSS estimator, we assume that, for any α, Mα is in Θ(h−1/3) or in182

Θ(h−1/3 log(h−1)). Then, Eq. (4) gives the following upper bounds for the error183

L(gAc )− L(
⌊
gAc
⌋
):184

• O
(
hmin(1,2γ)

)
for the sparse estimators;185

• O
(
h2/3

)
, or O

(
h2/3/ log2(h−1)

)
, for the MDSS estimator.186

The continuous lines in Fig. 2 correspond to these upper bounds. Though the187

behavior of the quantization error is less regular than the behavior of the dis-188

cretization error, the observed convergence rates for the quantization errors fit189

again our upper bounds. Also, note that the observed constants, hidden in the190

big O, are smaller than the ones calculated from Eq. (4) (from a factor of about191

10).192

From Propositions 2, 3 and 4, we derive the following theorems on the conver-193

gence speed when the function g is concave. Compared to Theorem 1, concavity194

almost squares the convergence speed. In particular, the optimal step-size for195

uniform size algorithms remains unchanged (Hγ(h) = Θ(h−
1
2 )) but the speed is196

improved up to h.197

Theorem 5. Let A be a (−1,+∞)-pattern function. Let g : [a, b] → R be a198

concave function whose one-sided derivatives are defined and Lipschitz on [a, b].199

Then LNL(A, g, h) converges toward L(g) as h tends to zero and200

L(g)− LNL(A, g, h) = O
(
h2
(
M3

)3
M1

)
+O

(
1

M−1M1

)
. (5)

Proof. The function g satisfies the hypothesis of Propositions 2, 3 and 4. So
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Figure 2:
∣∣L(gAc )− L(

⌊
gAc
⌋
)
∣∣ (see text).

we have

|L(g)− L(gc)| = O(h) ,∣∣L(gc)− L(gBc )
∣∣ = O

(
h2
(
M3

)3
M1

)
,

∣∣L(gBc )− L(
⌊
gAc
⌋
)
∣∣ = O

(
1

M−1M1

)
+O(h) .

Since α 7→Mα is non decreasing, we derive

h2
(
M3

)3
M1

× 1

M−1M1
≥ h2 ,

Thus, we can see that either

h2
(
M3

)3
M1

≥ h or
1

M−1M1
≥ h .

Hence, Eq. (5) holds.201

SinceA is an (−1,+∞)-pattern function, on the one handM−1 and a fortiori
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M1 tend toward +∞. On the other hand, from Eq. (3),

h2
(
M3

)3
M1

≤ (hM+∞)2 .

.

Then, since lim
h→+∞

hM+∞ = 0 by hypothesis, we conclude straightforwardly202

that LNL(A, g, h) converges toward L(g). �203

In order to include the MDSS based estimators, the hypothesis on the max-204

imal subsegment length, limh→0 hM+∞ = 0 , should be relaxed. It is replaced205

in Theorem 6 by a hypothesis on the pattern function distance to the function206

graph.207

Theorem 6. Let A be a 1-pattern function. Let g : [a, b] → R be a concave208

function whose one-sided derivatives are defined and Lipschitz on [a, b]. If, as h209

tends toward zero, the Hausdorff distance between D(g, h) and
⌊
gAc
⌋
is bounded2,210

then LNL(A, g, h) converges toward L(g) and211

L(g)− LNL(A, g, h) = O(h) +O
(

1

MA1

)
. (6)

Proof. Let h > 0 and (ai)
N
i=0 = A(g, h). We subdivide each subinterval of212

the partition A(g, h) in fixed size segments whose sizes are ` and a last segment213

whose size is not greater than ` (we do a sparse estimation of each subinterval).214

Then, the pattern function B is defined by B(g, h) = (bi)
NB

i=0 where b0 = a0 = A215

and, for any i ∈ [[1, NB]], bi = min
(
bi−1 + `, aj

)
with j = min{k | ak > bi−1}.216

Let k = max
{(

drg(x) − d`g(y)
)
/(y − x)

∣∣ x < y ∈ [a, b]
}
. From Proposi-217

tion 2, we have218

|L(g)− L(gc)| = O(h) . (7)

From Proposition 3, we derive

∣∣L(gc)− L(gBc )
∣∣ ≤ NB∑

i=1

k2

4
(bi − bi−1)3h3 ≤ k2

4
NB (`h)3 ,

where

NB =

NA∑
i=1

⌈
ai − ai−1

`

⌉
≤

NA∑
i=1

ai − ai−1
`

+NA ≤ B −A
`

+
B −A
MA1

.

Thus,219

NB ≤ (b− a)

(
1

`h
+

1

hMA1

)
. (8)

2Actually, instead of
⌊
gAc
⌋
, we should use the function x 7→

⌊
gAc
⌋
(hx)/h.
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Then220 ∣∣L(gc)− L(gBc )
∣∣ ≤ k2

4
(b− a)

(
`2h2 +

`3h2

MA1

)
. (9)

The functions
⌊
gAc
⌋
and gBc are piecewise affine. Thus,

‖
⌊
gAc
⌋
− gBc ‖∞ = max

i∈[[0,NB]]
(
∣∣⌊gAc ⌋ (hbi)− gBc (hbi)

∣∣)
≤ max
i∈[[0,NB]]

( ∣∣⌊gAc ⌋ (hbi)− hD(g, h)(bi)
∣∣ )+ h

≤ O(h) (from the hypotheses) ,

Then, the hypotheses of Proposition 4 are satisfied. We derive that there exists
two constants U and V , depending on g and A such that

∣∣L(gBc )− L(
⌊
gAc
⌋
)
∣∣ ≤ U NB∑

i=1

h

(bi − bi−1)
+ V h

≤ U
(

(NB −NA)× h

`
+NA × h

)
+ V h

≤ Uh
(
NB

`
+NA

)
+ V h .

Hence, Equation (8) implies221

∣∣L(gBc )− L(
⌊
gAc
⌋
)
∣∣ ≤ U (b− a)

(
1

`2
+

1

`MA1
+

1

MA1

)
+ V h . (10)

Eventually, we obtain the following upper bound:∣∣L(g)− L(
⌊
gAc
⌋
)
∣∣ ≤ O(h)+

k2

4
(b− a)

(
`2h2 +

`3h2

MA1

)
+ U (b− a)

(
1

`2
+

1

`MA1
+

1

MA1

)
+ V h . (11)

Taking ` = h−1/2, we obtain the result:222 ∣∣L(g)− L(
⌊
gAc
⌋
)
∣∣ = O(h) +O(1/MA1 ) . (12)

Note that, if we assume a uniform distribution of the integers (ai − ai−1)223

mod ` in the interval [[0, `−1]], the expected value of
∑NB

i=1
h

(bi−bi−1)
is in O

(
(b−224

a)
(

1
`2 + 1

`MA1
+ 1

`2MA1

))
for large enough NA. Then, together with ` = h−1/2,225

Equation (12) becomes
∣∣L(g)− L(

⌊
gAc
⌋
)
∣∣ = O(h) +O(h1/2/MA1 ). �226

On our example with the logarithm, the observed error for the MDSS method227

(see Figure 3) is in O(h) which is better than the expected convergence rate228

O(h)+O(h1/2/MA1 ) (and a fortiori better than the worst case convergence rate229

O(h) + O(1/MA1 )). Indeed, the mean M1 for the MDSS pattern function lies230

11
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Figure 3:
∣∣L(g)− L(⌊gMDSS

c

⌋
)
∣∣. The continuous lines correspond to the convergence rates

derived from Theorem 6 and Theorem 9 (see text).

between O(h−1/3) and O(h−1/3 log(h−1)) [5], so the bound for the expected231

convergence rate lies between O(h5/6) and O(h5/6 log(h−1)).232

In the next section, we introduce the notion of biconcavity which corresponds233

to the actual behavior of MDSS and we show that this property speeds up the234

convergence rate and explains the observed convergence rate of the MDSSE.235

4. Biconcavity236

When the function g is concave, the piecewise affine function gAc is clearly237

also concave. Nevertheless, the second piecewise function
⌊
gAc
⌋
is not necessarily238

concave. When, below some threshold h0, the function
⌊
gAc
⌋
is concave for239

any h > 0, we say that g is biconcave relative to A. In Appendix A.2, we240

exhibit a concave function that is not biconcave relative to any local estimator.241

Nevertheless, it follows from the very definition of
⌊
gAc
⌋
that its hypograph is242

digitally convex (the convex hull of the hypograph does not contain more integer243

points than the hypograph itself) and it was proved in [6] that the MDSS of244

the boundary of digitally convex body of Z2 are monotonic. Hence, continuous245

concave functions are biconcave relative to the MDSSE pattern function.246

This section gives a sufficient condition to get the biconcavity property and247

studies the consequences on the convergence speed of such a property.248

Proposition 7. Let A be pattern function and let g : [a, b] → R be a concave249

function such that, for some constant k > 0, it is true that drg(x) − d`g(y) ≥250

12



k(y − x) for any x, y ∈ [a, b] such that x < y. If one of the following conditions251

holds, then the piecewise affine function
⌊
gAc
⌋
is concave.252

(i) hM−∞2 ≥ 2/k,253

(ii) hM−∞2 ≥ 1/k and A(g, h) is a constant sequence.254

Proof. Let δi = ai − ai−1 for 1 ≤ i ≤ N . The piecewise affine function
⌊
gAc
⌋

255

is concave iff, for any i ∈ [[1, N − 1]],256 ⌊
gAc
⌋

(hai+1)−
⌊
gAc
⌋

(hai)

hδi+1
≤
⌊
gAc
⌋

(hai)−
⌊
gAc
⌋

(hai−1)

hδi
. (13)

Since, for any k ∈ [[0, N ]],
⌊
gAc
⌋

(hak) is a multiple of h, Equation (13) can be
rewritten as

δi
( ⌊
gAc
⌋

(hai+1)−
⌊
gAc
⌋

(hai)
)
− δi+1

( ⌊
gAc
⌋

(hai)−
⌊
gAc
⌋

(hai−1)
)

< h gcd(δi, δi+1).

Thus, from the very definition of the function
⌊
gAc
⌋
, we derive that Equation

(13) is true whenever

δi
(
g(hai+1)− g(hai) + h

)
− δi+1

(
g(hai)− g(hai−1)− h

)
≤ h gcd(δi, δi+1).

(14)

Now, from the hypotheses, we derive that, for any x, y ∈ [a, b] such that x < y,

g(y)− g(x) =

∫ y

x

g′(t) dt

≤
∫ y

x

drg(x)− k(t− x) dt

≤ drg(x)(y − x)− 1

2
k(y − x)2 .

Alike,

d`g(y)(y − x) +
1

2
k(y − x)2 ≤ g(y)− g(x) .

Then
g(hai+1)− g(hai) ≤ drg(hai)hδi+1 −

1

2
k(hδi+1)2

and
d`g(hai)hδi +

1

2
k(hδi)

2 ≤ g(hai)− g(hai−1)

Thus, Equation (14) is true whenever

hδiδi+1

(
drg(hai)−

1

2
khδi+1−d`g(hai)−

1

2
khδi

)
≤ h

(
gcd(δi, δi+1)−δi−δi+1

)
.

13



Noting that drg(hai) ≤ d`g(hai), we get the following sufficient inequality

h(M−∞)2k(δi+1 + δi) ≥ 2
(
δi + δi+1 − gcd(δi, δi+1)

)
.

That is
h(M−∞)2k ≥ 2

(
1− gcd(δi, δi+1)

δi+1 + δi

)
.

Proposition 7 follows straightforwardly. �257

The next proposition is an improvement of Proposition 4 in case of bicon-258

cavity. It is a consequence of Lemma 15.259

Proposition 8. Let A and B be two pattern functions such that B ≺ A,
⌊
gAc
⌋

260

is concave and ‖
⌊
gAc
⌋
−
⌊
gBc
⌋
‖∞ ≤ ωh for some ω > 0. Then261 ∣∣L(gBc )− L(

⌊
gAc
⌋
)
∣∣ ≤ Uh , (15)

where U = max(α, α− 2β) with α = ϕ′(g′(a) + 1) and β = ϕ′(g′(b)− 1).262

Proof. From the hypotheses, we have( ⌊
gAc
⌋
− ωh

)
≤ gBc ≤

( ⌊
gAc
⌋
− ωh

)
+ (2ω + 1)h .

Moreover, gBc is concave (for g is concave).
Let sA1 and sA2 , resp. sB1 and sB2 , be the slopes of the first and last segments of⌊
gAc
⌋
, resp. gBc . From Lemma 15, applied with f1 =

⌊
gAc
⌋
− ωh, f2 = gBc and

e = (2ω + 1)h, we derive ∣∣L(gBc )− L(
⌊
gAc
⌋
)
∣∣ ≤ U0h ,

where U0 = max(ϕ′(s1), ϕ′(s1)− 2ϕ′(s2)) with si, i ∈ {1, 2}, lying between sAi
and sBi .
Let (ai)

N
i=0 = A(g, h), δ1 = a1 − a0 and δN = aN − aN−1. It can easily be seen

that
sA1 < sB1 + 1/δ1

and
sA2 > sB2 − 1/δN .

Then, since g is concave,

sA1 < g′(a) + 1/δ1 ≤ g′(a) + 1

and
sA2 > g′(b)− 1/δN ≥ g′(b)− 1 .

Thus,
s1 ≤ max(sA1 , s

B
1 ) < g′(a) + 1

and
s2 ≥ min(sA2 , s

B
2 ) > g′(b)− 1 .
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As the function ϕ′ is increasing, we get

ϕ′(s1) < α

and
ϕ′(s2) > β .

then
U0 < U

and the result holds.263

�264

The following theorem is the consequence of Proposition 8 on the convergence265

speed of the non-local estimators.266

Theorem 9. Let A be a 1-pattern function. Let g : [a, b] → R be a biconcave267

function relative to A whose one-sided derivatives are defined and Lipschitz on268

[a, b]. If, as h tends toward zero, the Hausdorff distance between D(g, h) and269 ⌊
gAc
⌋
is bounded, then270

L(g)− LNL(g, h) = O(h) +O
(
h2/3

MA1

)
.

Proof. The proof is similar to the proof of Theorem 6 except that we invoke
Proposition 8 instead of Proposition 4. Then, in Equation (10), the term (b −
a)
(

1
`2 + 1

`MA1
+ 1

MA1

)
vanishes and we get

∣∣L(g)− L(
⌊
gAc
⌋
)
∣∣ ≤ O(h) +

k2

4

(
`2h2 +

`3h2

MA1

)
.

Taking ` = h−4/9, we obtain the result:

∣∣L(g)− L(
⌊
gAc
⌋
)
∣∣ = O(h) +O

(
h2/3

MA1

)
.

�271

Observe that, for the MDSS pattern function on the set of C3 functions with272

positive curvature, we have ([5]) Ω(h−1/3) ≤M1 ≤ O(h−1/3 log(h−1)). Then273

O
(

h

log(h−1)

)
≤
∣∣L(g)− L(

⌊
gMDSS
c

⌋
)
∣∣ ≤ O(h) . (16)

Equation 16 fits the MDSS convergence rates reported in Figure 3.274
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5. Conclusion275

In this paper, thanks to the concavity assumption, we improve previous re-276

sults on the multigrid convergence rate of the Non Local Estimators, a class of277

estimators that relies on a polygonal interpolation of the continuous function278

digitization. Furthermore, we introduce the notion of biconcavity which is sat-279

isfied by the MDSS estimator and by the sparse estimators with enough large280

pattern sizes. Biconcavity allows further improvement of the convergence rate,281

up to O(h) in the worst case, which is optimal with a square grid whose step is282

h. The proposed tests give convergence rates corresponding to the theoretical283

ones.284

Besides, some preliminary experiments indicate that the convergence rates
for concave functions also apply to a wide class of neither concave nor convex
functions. The test is the following: The discretization and the quantization
errors are measured for some function-graph length-estimation with respect to
the resolution r = 1/h. The NLE pattern function generates random steps
uniformly distributed between 0.5h−1/2 and 1.5h−1/2. Then, both error upper
bounds for concave functions (Prop. 3 and Prop. 4) are in O(h). The function
f0 is a concave function (f0(x) = ln(x), x ∈ [1, 2]) and the other functions are
defined as follows: fi(x) = f0(x) + Pi(x), i ∈ [1, 4], where Pi is a trigonometric
polynomial. The polynomials Pi, i ∈ {1, 2} are randomly generated as follows:

Pi(x) =

10∑
j=1

ai,j
(2πfi,j)i

sin(2πfi,jx+ ϕi,j)

where ai,j ∈ [1, 10], fi,j ∈ [2j , 2j+1] and ϕi,j ∈ [0, 2π). The polynomial P3 is285

the sine of P1 with the highest frequency (f1,10 = 1719) and P4(x) = P3(x)/30.286

The relative magnitudes of the Pi and their first two derivatives with respect to287

those of f0 are gathered in Table 1.

i 1 2 3 4
Pi 50% 1.5% 0.07% 0.05%

P ′i 4000% 30% 500% 1%
P ′′i 107% 3000% 5.106% 100%

Table 1: Relative magnitudes of the trigonometric polynomials Pi and their first two deriva-
tives with respect to those of f0.

288

From the length estimation convergence rates shown in Fig. 4, it seems that289

curves with finitely many inflection points behave like concave or convex curves290

above some resolution. It is also possible that a combination of Th. 5 and Th.291

6 would apply on curves with bounded curvatures. This very first test shows292

the necessity to deepen the research on this subject.293

The NLE framework with its pattern functions appears to be an efficient tool294

to study the multigrid convergence of the length estimators. Future works will295

extend to the plane curves the obtained results and prospect the relaxation of296
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Figure 4: The discretization error (left) and the quantization error (right) with respect to
the resolution r = 1/h for a concave function (f0(x) = ln(x), x ∈ [1, 2]) and four functions
fi(x) = f0(x) + Pi(x), i ∈ [1, 4], where Pi is a trigonometric polynomial (see text).

the concavity assumption. Also, they should investigate more finely the behavior297

of the quantization error.298

Appendix A. Counterexamples299

Appendix A.1. An inferior bound for the convergence speed of a concave func-300

tion301

We present in this section an example of a parabola rectification by a sparse302

estimator where the bound found in Theorem 5 is reached.303

Let H = h−γ with 0 < γ < 1 be the step of the sparse estimator, the
pattern function of which is noted A (A is a (α, β)-pattern function for any α,
β in R \ {0}). Let g be the function defined on the interval I = [ 1

16 ,
19
48 ] by

g(x) = (19
48 )2− x2. The function g clearly satisfies the hypotheses of Theorem 5

and the k-th power mean MAk is in O(h−γ) for any non-zero real number k.
Then, from Theorem 5 we get

L(g)− LNL(A, g, h) = O(h2(1−γ)) +O(h2γ) .

Thereby, the best choice for H is h−1/2 which gives L(g)−LNL(A, g, h) = O(h).304

Let gAc and
⌊
gAc
⌋
be the piecewise affine functions defined in Section 2.2. Then,305

we shall prove below that the lengths of their curves satisfy L(
⌊
gAc
⌋
) + 0.07h ≤306

L(gAc ) ≤ L(g) for any h = (12(8p+ 1))−2 where p ∈ N. Observe that the307

bounds of the interval I are multiple of h. Hence, there is no error due to the308

bounds (i.e. gAc = g). Moreover, the function g verifies the condition (i) of309

Prop. 7 and is then biconcave relative to A. Eventually, for any p ∈ N and310

h = (12(8p+ 1))−2, we get L(g) − LNL(A, g, h) ≥ 0.07h which proves that the311

convergence rate in Theorem 5 cannot be improved in the general case.312
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Detailed calculus.
The notations are those introduced in Paragraph Notations of Section 2.2.
Let h = 1

144(8p+1)2 (p ∈ N) and H = h−
1
2 = 12(8p+ 1).

Thereby, here we have

A = 9(8p+ 1)2 and Ah =
1

16
,

B = 57(8p+ 1)2 and Bh =
19

48
,

N =

⌈ 19
48 − 1

16

hH

⌉
= 4(8p+ 1) ,

∀i ∈ [[0, N ]], hai =
1

16
+ ihH =

1

16
+ i
√
h .

Furthermore, we have313

g(hai) =
⌊
gAc
⌋

(hai) + (i mod 2)× h

2
. (A.1)

We also set

c =
h

2
,

zi = h
(ai + ai+1)

2
,

yi = g(hai+1)− g(hai)

= −2
√
h zi .

Then, from (A.1), we derive

L(gAc )− L(
⌊
gAc
⌋
) =

N/2−1∑
i=0

(√
h+ y2i2 +

√
h+ y2i+1

2
)

−
(√

h+ (y2i − c)2 +
√
h+ (y2i+1 + c)2

)
.

On the one hand√
h+ y2i2 −

√
h+ (y2i − c)2 = −h

4

8z2i +
√
h

√
1 + 4z2i2 +

√
1 + 4(z2i + 1

4

√
h)2

≥ −h
8

8z2i +
√
h√

1 + 4z2i2
.

On the other hand√
h+ y2i+1

2 −
√
h+ (y2i+1 + c)2 =

h

4

8z2i+1 −
√
h√

1 + 4z2i+1
2 +

√
1 + 4(z2i+1 − 1

4

√
h)2

≥ h

8

8z2i+1 −
√
h√

1 + 4z2i+1
2
.
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By summing,

L(gAc )− L(
⌊
gAc
⌋
) ≥

h

16p+1∑
i=0

(
z2i+1√

1 + 4z2i+1
2
− z2i√

1 + 4z2i2

)
− h
√
h

8

32p+3∑
i=0

1√
1 + 4zi2

.

Since the function f1(x) = x√
1+4x2

is monotonically increasing and concave, one
has

16p+1∑
i=0

(f1(z2i+1)− f1(z2i)) ≥
1

2

32p+3∑
i=0

(f1(zi+1)− f1(zi))

≥ 1

2
(f1(z32p+4)− f1(z0)) .

Moreover, the function f2(x) = 1√
1+4x2

is monotonically decreasing and con-

vex. Thus the Riemann sum
∑32p+3
i=0

1√
1+4zi2

×
√
h is bounded by the integral∫ 19

48
1
16

f2(x) dx. It follows that

L(gAc )− L(
⌊
gAc
⌋
) ≥ h

2

(
f1
(19

48
+

√
h

2

)
− f1

( 1

16
+

√
h

2

)
−1

8
arg sinh

(19

24

)
+

1

8
arg sinh

(1

8

))
.

Since
√
h ≤ 1

12 for any p ∈ N, we obtain

L(gAc )− L(
⌊
gAc
⌋
) > 0.076h.

Eventually, for any h = 1
(12(8p+1))2 , we have shown that314

L(g) ≥ L(gAc ) ≥ L(
⌊
gAc
⌋
) + 0.07h.

This example shows that for some non-local estimators, the obtained bounds315

are tight and therefore cannot be improved in the general case.316

Appendix A.2. Biconcavity317

In this section, we exhibit a concave function whose discretizations contain318

arbitrary long convex pairs of chords. The counterexample relies on the following319

theorem proved in [7]. This theorem asserts that, given a function x 7→ ax2 +320

bx+c, the distribution in [0, h] of the values of the expression
(
a(kh)2+b(kh)+c

)
321

mod h, k ∈ N, which are the errors resulting from the quantization in hZ, tends322

toward the equidistribution.323
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Theorem 10 ([7, Lemma 2 and Prop. 3]). Let a, b ∈ R, a < b. Let g :324

[a, b]→ R be a polynomial function of degree 2. Then, for all interval I ⊆ [0, 1],325

lim
h→0

card{x ∈ hZ ∩ [a, b] | g(x) mod h ∈ hI}
card(hZ ∩ [a, b])

= µ(I) ,

where µ(I) is the classical length of I.326

Let us consider the function g(x) = 2x−x2, x ∈ [0, 1], which is concave. We327

denote by bgch the function x ∈ [0, 1] 7→ bg(x)/hch ∈ hZ. Let H be a positive328

integer. Thanks to Theorem 10, we prove that, for each grid spacing h below329

some threshold, we can choose an integer p such that the finite difference330

bgch((p + H)h) − bgch(ph) is less than or equal to the grid spacing h while331

the finite difference bgch((p + 2)Hh) − bgch(ph) is greater than twice the grid332

spacing h. Thus, the graph of bgch has a convex pair of consecutive chords.333

Detailed calculus.
According to Theorem 10 with [a, b] = [1 − 17

24H , 1 − 16
24H ] and I = [ 4

12 ,
7
12 ), it

exists a real h0 > 0 such that, for any h ∈ (0, h0), one has

card
{
n ∈ J | g(nh)− bgch(nh) ∈ [ 4h12 ,

7h
12 )
}
≥ 1

5
card J ,

where J = [[ ah ,
b
h ]].334

Since card J → +∞ as h → 0, there exists h1 > 0 such that for any h <335

h1, one can find n0 ∈ N such that [[n0H, (n0 + 2)H]] ⊂ J and g(n0hH) −336

bgch(n0hH) ∈ [ 4h12 ,
7h
12 ).337

Let h < h1. Noting that 16
12H ≤ g′(x) ≤ 17

12H on [a, b], we claim that

bgch((n0 + 1)hH)−bgch(n0hH)

< g((n0 + 1)hH)− (g(n0hH)− 7

12
h)

<
17

12H
× hH +

7

12
h

< 2h .

As the left hand side of the above inequalities is a multiple of h, we get

bgch((n0 + 1)hH)− bgch(n0hH) ≤ h .

In the same way, we obtain

bgch((n0 + 2)hH)− bgch(n0hH)

> g((n0 + 2)hH)− h− (g(n0hH)− 4

12
h)

>
16

12H
× 2hH − 2

3
h

> 2h .
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Thus,
bgc((n0 + 2)hH)− bgc(n0hH) ≥ 3h .

Finally, we have

bgc((n0 + 2)hH)− bgc(n0hH) > 2
(
bgc((n0 + 1)hH)− bgc(n0hH)

)
.

That is, the function bgc is strictly convex on [n0hH, (n0 + 2)hH].338

Appendix B. Technical lemmas339

Lemma 11. Let f be a Lipschitz continuous function defined on an interval340

[a, b]. Let m, M be two real numbers such that m ≤ f ′(t) ≤M for any t ∈ [a, b]341

where the derivative of f is defined. Then, the length L(f) of the graph of f is342

less than, or equal to, the length of the polylines joining the points A(a, f(a))343

and B(b, f(b)) with segments of slopes m or M .344

Proof. We assume without loss of generality that [a, b] = [0, 1]. Let s be the
slope of the line from A to B. Since f is Lipschitz continuous, it is almost
everywhere differentiable and the slope s is equal to the integral of f ′ on [0, 1].
Thus, m ≤ s ≤ M and there exists k ∈ [0, 1] such that s = (1 − k)m + kM .
Moreover,

L(f) =

∫ 1

0

ϕ ◦ f ′(t) dt.

and it can easily be seen that the length of any polyline joining the points A345

and B with segments of slopes m or M is L = (1− k)ϕ(m) + kϕ(M).346

We shall prove that L(f)− s ≤ L− s, that is
1∫

0

ψ ◦ f ′(t) dt ≤ (1− k)ψ(m) + kψ(M) ,

where ψ(x) = ϕ(x)−x. Observe that the function ψ is positive, decreasing and347

convex.348

Let ψ◦g be a simple function such that 0 < ψ◦g ≤ ψ◦f ′ (since ψ is bijective
from R to ]0,+∞[, any positive simple function can be written as ψ ◦ g). From
ψ ◦ g ≤ ψ ◦ f ′, we derive that g ≥ f ′. Thus, g ≥ m. Furthermore, even if it
means replacing g by inf(g,M), we may assume that g ≤ M . Now, let k1 be
the real in [0, 1] such that∫ 1

0

g(t) dt = (1− k1)m+ k1M .

As g ≥ f ′, we have k1 ≥ k and, since ψ is convex and decreasing,349 ∫ 1

0

ψ ◦ g(t) dt ≤ (1− k1)ψ(m) + k1ψ(M) ≤ (1− k)ψ(m) + kψ(M) . (B.1)
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m λ1 λ2 λ3 M
∫
g

ψ(m)

ψ(λ1 )

ψ(λ2 )

ψ(λ3 )
ψ(M)

∫
ψ ◦g

Figure B.5: An illustration of the first inequality in (B.1). We assume g =
∑n

i=0 λi1Ei where,
for any i, m ≤ λi ≤ M , the measurable sets Ei are pairwise disjoint and

∑n
i=0 µ(Ei) = 1

(here, µ is the Lebesgue measure on R). Thus, the point with coordinates (
∫
g,
∫
ψ ◦ g) is

the barycenter of the weighted points
(
(λi, ψ(λi)), µ(Ei)

)
while the point with coordinates

(
∫
g, (1 − k1)ψ(m) + k1ψ(M)) is the barycenter of the weighted points

(
(m,ψ(m)), 1 − k1

)
,(

(M,ψ(M)), k1
)
.

The first inequality in Equation B.1 is illustrated, and commented, in Figure B.5.350

351

Eventually,∫ 1

0

ψ ◦ f ′(t) dt = max
g

∫ 1

0

ψ ◦ g(t) dt ≤ (1− k)ψ(m) + kψ(M) .

�352

Lemma 12. Let ABC be a triangle in R2 (A 6= C) with edges of slopes −∞ <353

α < β < γ < +∞. We assume that the edge AC have slope β. Then,354

AB +BC −AC
AC

≤ (γ − α)2

4ϕ(β)
.

Fig. B.6 illustrates the configuration studied in Lemma 12.355

Proof. Let k ∈ (0, 1) such that β = kγ + (1 − k)α. Let m be the abscissa
of AC. It can be seen that the vectors AB, BC and AC have coordinates
(km, kmγ), ((1− k)m, (1− k)mα) and (m,mβ). Thus,

AB +BC −AC = m
(
kϕ(γ) + (1− k)ϕ(α)− ϕ(β)

)
= m

(
k
(
ϕ(γ)− ϕ(kγ + (1− k)α)

)
+

(1− k)
(
ϕ(α)− ϕ(kγ + (1− k)α)

))
= mk(1− k)(γ − α)

(
ϕ′(ξ1)− ϕ′(ξ2)

)
= mk(1− k)(γ − α)(ξ1 − ξ2)ϕ′′(ξ) ,

where ξ1, ξ2, ξ lie between α and γ.356
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m

β

γ

α

A

B

C

Figure B.6: α, β, γ are the slopes of the segments BC, CA, AB.

Hence,357

AB +BC −AC ≤ m(γ − α)2

4
, (B.2)

for ‖ϕ′′‖∞ = 1. As AC = mϕ(β), the result holds. �358

Lemma 13. Let (un)n∈N a monotonically non-increasing sequence of real non359

negative numbers and (cn)n∈N a sequence of reals in an interval I such that360 ∑j
i=0 ci ∈ I for any integer j. Then,

∑j
i=0 ci ui ∈ u0 I for any integer j.361

Proof. If u0 = 0, then un = 0 for any n and the result is obvious. From now,
we assume u0 > 0. Let n ∈ N and S =

∑n
i=0 ci ui. We set Cj =

∑j
i=0 ci for

any j ≤ n, pi = ui−ui+1

u0
for any i ≤ n − 1 and pn = un

u0
. The reals pi are all

non-negative and their sum equals 1. We can easily check that

S =

n−1∑
i=0

( i∑
j=0

cj

)
(ui − ui+1) +

( n∑
j=0

cj

)
un

= u0

( n∑
i=0

pi Ci

)
.

The last equality above shows that the real 1
u0
S is the barycenter –with non-362

negative weights– of numbers in the interval I. Thus, the result holds. �363

Lemma 14. Let f1 and f2 be two piecewise affine functions defined on [c, d] ⊂
R, (c < d), with a common partition σ = (xi)

p
i=0 having p steps and such that

f1 ≤ f2 ≤ f1 + e for some constant e > 0. If furthermore f2 is concave, then

|L(f1)− L(f2)| ≤
p∑
i=1

1

xi − xi−1
e2 + Ue

≤ p

M−1(σ)
e2 + Ue .
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where U = max(ϕ′(s2,0), ϕ′(s2,0)− 2ϕ′(s2,p−1))) is a constant which depends on364

the slopes s2,0 and s2,p−1 of the first and the last segments of f2.365

Proof. Let σ = (xi)
p
i=0 be the common partition for f1 and f2. We write mi

for xi+1 − xi and s1,i, resp. s2,i, for the slope of f1, resp. f2, on the interval
[xi, xi+1]. Then,

L(f1)− L(f2) =

p−1∑
i=0

mi

(
ϕ(s1,i)− ϕ(s2,i)

)
=

p−1∑
i=0

ϕ′(s0,i)mi(s1,i − s2,i) where s0,i ∈ [s1,i, s2,i]

=

p−1∑
i=0

ϕ′(s2,i)mi(s1,i − s2,i) +

p−1∑
i=0

(ϕ′(s0,i)− ϕ′(s2,i))mi(s1,i − s2,i) .

Let give an upper bound for C=
∣∣∣∑p−1

i=0 ϕ
′(s2,i)mi(s1,i − s2,i)

∣∣∣. Since the func-

tion f2 is concave, the sequence (s2,i)
p−1
i=0 is non-increasing as is the sequence

(ϕ′(s2,i))
p−1
i=0 (for the function ϕ′ is increasing). Hence, we can apply Lemma 13

with the settings

ci = mi(s1,i − s2,i)
= (f1(xi+1)− f2(xi+1))− (f1(xi)− f2(xi)) ,

ui = ϕ′(s2,i)− ϕ′(s2,p−1) ,

I = [−e, e] .

Lemma 13 induces that
∣∣∣∑p−1

i=0 uici

∣∣∣ ≤ u0e. Then, we get

C ≤
∣∣∣∣∣
p−1∑
i=0

uici

∣∣∣∣∣ +

∣∣∣∣∣
p−1∑
i=0

ϕ′(s2,p−1)ci

∣∣∣∣∣
≤ u0e+ |ϕ′(s2,p−1)|

∣∣(f1(d)− f2(d)
)
−
(
f1(c)− f2(c)

)∣∣
≤ u0e+ |ϕ′(s2,p−1)| e
≤ Ue ,

where U = max(ϕ′(s2,0), ϕ′(s2,0)− 2ϕ′(s2,p−1)).366

We now look at the sum D=
∑p−1
i=0 (ϕ′(s0,i) − ϕ′(s2,i))mi(s1,i − s2,i). The

function ϕ′ is 1-Lipschitz (ϕ′′(x) = (1 + x2)(−3/2)), so we have

|ϕ′(s0,i)− ϕ′(s2,i)| ≤ |s0,i − s2,i| ≤ |s1,i − s2,i| .
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Then,

D ≤
p−1∑
i=0

mi(s1,i − s2,i)2 ≤
p−1∑
i=0

c2i
mi
≤

p−1∑
i=0

1

mi
e2 .

Eventually, we get367

|L(f1)− L(f2)| ≤ Ue+

p−1∑
i=0

1

mi
e2 . (B.3)

�368

Lemma 15. Let f1 and f2 be two concave piecewise affine functions defined on369

[c, d] ⊂ R such that f1 ≤ f2 ≤ f1 + e for some e > 0. Then370

|L(f1)− L(f2)| ≤ Ue . (B.4)

where U = max(ϕ′(α), ϕ′(α)− 2ϕ′(β)) with α, resp. β, lying between the slopes371

of the first, resp. last, segments of C(f1) and C(f2).372

Proof. Let σ = (xk)pk=0 be a common partition for f1 and f2. We write mk

for xk+1 − xk and s1,k, resp. s2,k, for the slope of f1, resp. f2, on the interval
[xk, xk+1]. Since f1 and f2 are concave, the sequences (s1,k) and (s2,k) are
monotonically non-increasing. Then,

L(f1)− L(f2) =

p−1∑
k=0

mk(ϕ(s1,k)− ϕ(s2,k)) =

p−1∑
k=0

ϕ′(zk)mk (s1,k − s2,k) ,

where zk ∈ (s1,k, s2,k).373

Let i < j be two integers in [[0, p − 1]]. Since s1,i > s1,j , s2,i > s2,j and, by374

definition, ϕ′(zi) and ϕ′(zj) are the slopes of two chords of the convex curve C(ϕ)375

between the points of abscissas s1,i, s2,i for the former and between the points376

of abscissas s1,j , s2,j for the latter, we derive that ϕ′(zi) > ϕ′(zj). Thereby, the377

sequence
(
ϕ′(zk)

)
is monotonically non-increasing.378

Now, from Lemma 13, taking

ck = mk(s1,k − s2,k)

= (f1(xk+1)− f2(xk+1))− (f1(xk)− f2(xk)),

uk = ϕ′(zk)− ϕ′(zp−1) and
I = [−e, e] ,

we derive from (12) that

|L(f1)− L(f2)| =
∣∣∣∣∣
p−1∑
k=0

(uk + ϕ′(zp−1))ck

∣∣∣∣∣
≤
∣∣∣∣∣
p−1∑
k=0

ukck

∣∣∣∣∣+ |ϕ′(zp−1)|
p−1∑
k=0

ck

≤ u0e+ |ϕ′(zp−1)| e
≤ Ue ,
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where U = ϕ′(z0)− ϕ′(zp−1) + |ϕ′(zp−1)| = max(ϕ′(z0), ϕ′(z0)− 2ϕ′(zp−1)). �379
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